首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Applications of random sampling in computational geometry,II   总被引:10,自引:0,他引:10  
We use random sampling for several new geometric algorithms. The algorithms are Las Vegas, and their expected bounds are with respect to the random behavior of the algorithms. These algorithms follow from new general results giving sharp bounds for the use of random subsets in geometric algorithms. These bounds show that random subsets can be used optimally for divide-and-conquer, and also give bounds for a simple, general technique for building geometric structures incrementally. One new algorithm reports all the intersecting pairs of a set of line segments in the plane, and requiresO(A+n logn) expected time, whereA is the number of intersecting pairs reported. The algorithm requiresO(n) space in the worst case. Another algorithm computes the convex hull ofn points inE d inO(n logn) expected time ford=3, andO(n [d/2]) expected time ford>3. The algorithm also gives fast expected times for random input points. Another algorithm computes the diameter of a set ofn points inE 3 inO(n logn) expected time, and on the way computes the intersection ofn unit balls inE 3. We show thatO(n logA) expected time suffices to compute the convex hull ofn points inE 3, whereA is the number of input points on the surface of the hull. Algorithms for halfspace range reporting are also given. In addition, we give asymptotically tight bounds for (k)-sets, which are certain halfspace partitions of point sets, and give a simple proof of Lee's bounds for high-order Voronoi diagrams.  相似文献   

2.
Summary We study a quantum random walk onA(SU(n)), the von Neumann algebra of SU(n), obtained by tensoring the basic representation of SU(n). Two classical Markov chains are derived from this quantum random walk, by restriction to commutative subalgebras ofA(SU(n)), and the main result of the paper states that these two Markov chains are related by means of Doob'sh-processes.  相似文献   

3.
This paper looks at random regular simple graphs and considers nearest neighbor random walks on such graphs. This paper considers walks where the degree d of each vertex is around (log n)a where a is a constant which is at least 2 and where n is the number of vertices. By extending techniques of Dou, this paper shows that for most such graphs, the position of the random walk becomes close to uniformly distributed after slightly more than log n/log d steps. This paper also gets similar results for the random graph G(n, p), where p = d/(n − 1). © 1996 John Wiley & Sons, Inc.  相似文献   

4.
We prove an optimal estimate of the smallest singular value of a random sub‐Gaussian matrix, valid for all dimensions. For an N × n matrix A with independent and identically distributed sub‐Gaussian entries, the smallest singular value of A is at least of the order √N ? √n ? 1 with high probability. A sharp estimate on the probability is also obtained. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
Let (Ω,A,μ) be a probability space, K the scalar field R of real numbers or C of complex numbers,and (S,X) a random normed space over K with base (ω,A,μ). Denote the support of (S,X) by E, namely E is the essential supremum of the set {AA: there exists an element p in S such that X p (ω) > 0 for almost all ω in A}. In this paper, Banach-Alaoglu theorem in a random normed space is first established as follows: The random closed unit ball S *(1) = {fS *: X * f ⩽ 1} of the random conjugate space (S *,X *) of (S,X) is compact under the random weak star topology on (S *,X *) iff EA=: {EA | AA} is essentially purely μ-atomic (namely, there exists a disjoint family {A n : nN} of at most countably many μ-atoms from EA such that E = ∪ n=1 A n and for each element F in EA, there is an H in the σ-algebra generated by {A n : nN} satisfying μ(FΔH) = 0), whose proof forces us to provide a key topological skill, and thus is much more involved than the corresponding classical case. Further, Banach-Bourbaki-Kakutani-Šmulian (briefly, BBKS) theorem in a complete random normed module is established as follows: If (S,X) is a complete random normed module, then the random closed unit ball S(1) = {pS: X p ⩽ 1} of (S,X) is compact under the random weak topology on (S,X) iff both (S,X) is random reflexive and EA is essentially purely μ-atomic. Our recent work shows that the famous classical James theorem still holds for an arbitrary complete random normed module, namely a complete random normed module is random reflexive iff the random norm of an arbitrary almost surely bounded random linear functional on it is attainable on its random closed unit ball, but this paper shows that the classical Banach-Alaoglu theorem and BBKS theorem do not hold universally for complete random normed modules unless they possess extremely simple stratification structure, namely their supports are essentially purely μ-atomic. Combining the James theorem and BBKS theorem in complete random normed modules leads directly to an interesting phenomenum: there exist many famous classical propositions that are mutually equivalent in the case of Banach spaces, some of which remain to be mutually equivalent in the context of arbitrary complete random normed modules, whereas the other of which are no longer equivalent to another in the context of arbitrary complete random normed modules unless the random normed modules in question possess extremely simple stratification structure. Such a phenomenum is, for the first time, discovered in the course of the development of random metric theory.  相似文献   

6.
Let {S n , n=0, 1, 2, …} be a random walk (S n being thenth partial sum of a sequence of independent, identically distributed, random variables) with values inE d , thed-dimensional integer lattice. Letf n =Prob {S 1 ≠ 0, …,S n −1 ≠ 0,S n =0 |S 0=0}. The random walk is said to be transient if and strongly transient if . LetR n =cardinality of the set {S 0,S 1, …,S n }. It is shown that for a strongly transient random walk with p<1, the distribution of [R n np]/σ √n converges to the normal distribution with mean 0 and variance 1 asn tends to infinity, where σ is an appropriate positive constant. The other main result concerns the “capacity” of {S 0, …,S n }. For a finite setA inE d , let C(A xA ) Prob {S n A, n≧1 |S 0=x} be the capacity ofA. A strong law forC{S 0, …,S n } is proved for a transient random walk, and some related questions are also considered. This research was partially supported by the National Science Foundation.  相似文献   

7.
Summary Let A r,A s,1r+sn-1, be independent isotropic uniform random r- resp. s-flats meeting a n-dimensional convex body K. It is shown that the probability that the points realizing the distance of A rand A sbelong to K is maximal if and only if K is a ball.  相似文献   

8.
We consider a branching random walk with a random environment in time, in which the offspring distribution of a particle of generation n and the distribution of the displacements of its children depend on an environment indexed by the time n. The environment is supposed to be independent and identically distributed. For A ?, let Zn(A) be the number of particles of generation n located in A. We show central limit theorems for the counting measure Zn(·) with appropriate normalization.  相似文献   

9.
Summary Letn random intervalsI 1, ...,I n be chosen by selecting endpoints independently from the uniform distribution on [0.1]. Apacking is a pairwise disjoint subset of the intervals; itswasted space is the Lebesgue measure of the points of [0,1] not covered by the packing. In any set of intervals the packing with least wasted space is computationally easy to find; but its expected wasted space in the random case is not obvious. We show that with high probability for largen, this best packing has wasted space . It turns out that if the endpoints 0 and 1 are identified, so that the problem is now one of packing random arcs in a unit-circumference circle, then optimal wasted space is reduced toO(1/n). Interestingly, there is a striking difference between thesizes of the best packings: about logn intervals in the unit interval case, but usually only one or two arcs in the circle case.  相似文献   

10.
The object of the present paper is to study the stability behavior of a nonlinear stochastic differential system with random delay of the form ?(t; ω), ω; u(t)) + ?? (t, ω) ?(z(ty(t; ω); ω) where ω ω, the supporting set of a probability measure space (ω, A, P), x(t, ω) in an n-dimensional random function; u(t) is an m-dimensional control vector, A(t, ω) in an n X p matrix function and ø in a p-dimensional random function defined on Rp X ω and y(t, ω) is a random delay with z(t, ω) being a p-dimensional observation vector defined a specific way. Conditions are given that guarantee the existence of an admissible control u, under the influence of which the sample paths of the stochastic system can be guided arbitrarily close to the origin with an assigned probability.  相似文献   

11.
Let A be an n×n random matrix with independent rows R1(A),…,Rn(A), and assume that for any in and any three‐dimensional linear subspace the orthogonal projection of Ri(A) onto F has distribution density satisfying (xF) for some constant C1>0. We show that for any fixed n×n real matrix M we have (1) where C>0 is a universal constant. In particular, the above result holds if the rows of A are independent centered log‐concave random vectors with identity covariance matrices. Our method is free from any use of covering arguments, and is principally different from a standard approach involving a decomposition of the unit sphere and coverings, as well as an approach of Sankar‐Spielman‐Teng for noncentered Gaussian matrices.  相似文献   

12.
Algorithms based on rapidly mixing Markov chains are discussed to produce nearly uniformly distributed random elements in abelian groups of finite order. Let A be an abelian group generated by set S. Then one can generate ?‐nearly uniform random elements of A using 4|S|log(|A|/?) log(|A|) additions and the same number of random bits. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2005  相似文献   

13.
In a random n-vertex digraph, each arc is present with probability p, independently of the presence or absence of other arcs. We investigate the structure of the strong components of a random digraph and present an algorithm for the construction of the transitive closure of a random digraph. We show that, when n is large and np is equal to a constant c greater than 1, it is very likely that all but one of the strong components are very small, and that the unique large strong component contains about Θ2n vertices, where Θ is the unique root in [0, 1] of the equation 1 ? x ? e?ex = 0. Nearly all the vertices outside the large strong component line in strong components of size 1. Provided that the expected degree of a vertex is bounded away from 1, our transitive closure algorithm runs in expected time O(n). for all choices of n and p, the expected execution time of the algorithm is O(w(n) (n log n)4/3), where w(n) is an arbitrary nondecreasing unbounded function. To circumvent the fact that the size of the transitive closure may be Ω(n2) the algorithm presents the transitive closure in the compact form (A × B)U C, where A and B are sets of vertices, and C is a set of arcs.  相似文献   

14.
Summary. Branching random walks and contact processes on the homogeneous tree in which each site has d+1 neighbors have three possible types of behavior (for d≧ 2): local survival, local extinction with global survival, and global extinction. For branching random walks, we show that if there is local extinction, then the probability that an individual ever has a descendent at a site n units away from that individual’s location is at most d − n/2 , while if there is global extinction, this probability is at most d −n . Next, we consider the structure of the set of invariant measures with finite intensity for the system, and see how this structure depends on whether or not there is local and/or global survival. These results suggest some problems and conjectures for contact processes on trees. We prove some and leave others open. In particular, we prove that for some values of the infection parameter λ, there are nontrivial invariant measures which have a density tending to zero in all directions, and hence are different from those constructed by Durrett and Schinazi in a recent paper. Received: 26 April 1996/In revised form: 20 June 1996  相似文献   

15.
Given an r-uniform hypergraph H = (V, E) on |V| = n vertices, a real-valued function f:ER+ is called a perfect fractional matching if Σvϵe f(e) ≤ 1 for all vϵV and ΣeϵE f(e) = n/r. Considering a random r-uniform hypergraph process of n vertices, we show that with probability tending to 1 as n→ infinity, at the very moment t0 when the last isolated vertex disappears, the hypergraph Ht0 has a perfect fractional matching. This result is clearly best possible. As a consequence, we derive that if p(n) = (ln n + w(n))/ , where w(n) is any function tending to infinity with n, then with probability tending to 1 a random r-uniform hypergraph on n vertices with edge probability p has a perfect fractional matching. Similar results hold also for random r-partite hypergraphs. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
We consider first order sentences about two logical structures. First we consider 1,…, n with the successor relation and a random unary relation that points satisfy with probability p(n). We then replace the successor relation with less than. For both structures we characterize those p(n) for which a zero-one law holds.  相似文献   

17.
We give a short proof that the largest component C 1 of the random graph G(n, 1/n) is of size approximately n 2/3. The proof gives explicit bounds for the probability that the ratio is very large or very small. In particular, the probability that n −2/3|C 1| exceeds A is at most e - cA3{e^{ - c{A^3}}} for some c > 0.  相似文献   

18.
We study the distribution Q on the set Bn of binary search trees over a linearly ordered set of n records under the standard random permutation model. This distribution also arises as the stationary distribution for the move-to-root (MTR) Markov chain taking values in Bn when successive requests are independent and identically distributed with each record equally likely. We identify the minimum and maximum values of the functional Q and the trees achieving those values and argue that Q is a crude measure of the “shape” of the tree. We study the distribution of Q(T) for two choices of distribution for random trees T; uniform over Bn and Q. In the latter case, we obtain a limiting normal distribution for −ln Q(T). © 1996 John Wiley & Sons, Inc.  相似文献   

19.
It is well known [9] that finding a maximal independent set in a graph is in class NC and [10] that finding a maximal independent set in a hypergraph with fixed dimension is in RNC. It is not known whether this latter problem remains in NC when the dimension is part of the input. We will study the problem when the problem instances are randomly chosen. It was shown in [6] that the expected running time of a simple parallel algorithm for finding the lexicographically first maximal independent set (Ifmis) in a random simple graph is logarithmic in the input size. In this paper, we will prove a generalization of this result. We show that if a random k-uniform hypergraph has vertex set {1, 2, …, n} and its edges are chosen independently with probability p from the set of (nk) possible edges, then our algorithm finds the Ifmis in O( ) expected time. The hidden constant is independent of k, p. © 1996 John Wiley & Sons, Inc. Random Struct. Alg., 9 , 359–377 (1996)  相似文献   

20.
We present an efficient algorithm for generating an n × n nonsingular matrix uniformly over a finite field. This algorithm is useful for several cryptographic and checking applications. Over GF[2] our algorithm runs in expected time M(n) + O(n2), where M(n) is the time needed to multiply two n × n matrices, and the expected number of random bits it uses is n2 + 3. (Over other finite fields we use n2 + O(1) random field elements on average.) This is more efficient than the standard method for solving this problem, both in terms of expected running time and the expected number of random bits used. The standard method is to generate random n × n matrices until we produce one with nonzero determinant. In contrast, our technique directly produces a random matrix guaranteed to have nonzero determinant. We also introduce efficient algorithms for related problems such as uniformly generating singular matrices or matrices with fixed determinant. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号