首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
A novel in situ composite comprised of kaolin clay fillers and polyamide 6 (Nylon-6) was synthesized via a colloidal approach by suspending kaolin particles in aqueous caprolactam and then polymerizing the caprolactam under elevated temperature and pressure. This in situ polymerization technique enables the deposition of nylon molecules directly onto the filler surface. It offers a much larger contact surface area for the nylon molecules to interact with the filler particles and enhances filler/matrix interaction through polymer miscibility. The kaolin particles were shown to be uniformly dispersed in Nylon-6 matrix without appreciable agglomeration. In the highly clay-loaded composites such as the 50/50 kaolin/Nylon-6 in situ composite, the deposited nylon molecules probably form a coated layer on the filler particles. This kind of nylon coated fillers may be applied as a reinforcing entity to commercial Nylon-6 or −;66 by improving particle dispersion and melt processability. The 50/50 kaolin/Nylon-6 in situ composites have been used as a masterbatch for blending with commercial Nylon-6 and Nylon-66 to take advantage of their good properties and to reduce cost. Rheology and mechanical properties of the masterbatch/nylon composites have been investigated in comparison with those of the conventional melt-mixed composites. The improvement of rheological and mechanical properties of the in situ composites has been discussed in relation to the composite structure. © 1996 John Wiley & Sons, Inc.  相似文献   

2.

Kaolin-filled polypropylene (PP) composites generally form α-crystal due to the effect of kaolin with α-nucleation. The transition from α- to β-nucleation of kaolin has been investigated, and a novel kaolin with β-nucleation (β-kaolin) and kaolin-filled PP composites with high β-crystal content were prepared first. The DSC and WAXD results indicated that the β-kaolin exhibits stronger β-nucleating ability than CaPA as β-nucleating agent for PP crystallization. It is found that the β-crystal content has been influenced little by filler contents in β-kaolin-filled PP composites. Mechanical properties and spherulitic morphology of filled PP composites was characterized. The synergistic effect of filler and β-crystal significantly improved impact strength of kaolin-filled PP composites.

  相似文献   

3.
Silica fume (SF) is silica-rich amorphous waste by-product obtained during zirconium silicate electrofusion process. The key objective of the study was to determine the efficiency of SF as a reinforcing filler in Natural Rubber (NR) compounds vis a vis the conventional filler, high abrasion furnace (HAF) black. Inter-particle distance and particle size distribution analysis from Transmission Electron Microscopy exhibited homogeneous dispersion of filler in hybrid composite (NR SF20/HAF30) with Bis[3-(triethoxysilyl)propyl] tetrasulfide (TESPT). NR composite with 20 phr SF loading improved modulus by 107%, tensile strength by 12%, and tear strength by 28% over gum NR. Hybrid composite showed 111% increase in modulus than NR SF20 composite. Theoretical modelling of Young's modulus with volume fraction of filler quite fit with Guth-Gold equation. Hybrid composite with TESPT showed 72% reduction in heat build-up compared to NR HAF50 composite. Thermal stability improved by 6 °C and rolling resistance reduced by 64% for hybrid TESPT composite compared to NR HAF50 composite. Constrained region in NR composites obtained from dynamic mechanical analysis showed improved rubber-filler interaction in hybrid TESPT composite. Hence, this work not only provides a new approach to utilize industrial waste but also provides for a high performance NR composite at low cost.  相似文献   

4.
傅强 《高分子科学》2011,29(3):377-389
Three types of high-density polyethylene(HDPE)with different molecular weights(high,medium and low)were adopted to evaluate the influence of matrix molecular weight on the structure-property relation of injection-molded HDPE/mica composites through a combination of SEM,2d-WAXS,DSC,DMA and tensile testing.Various structural factors including orientation,filler dispersion,interfacial interaction between HDPE and mica,etc.,which can impact the macroscopic mechanics,were compared in detail among the three HDPE/mica composites.The transcrystallization of HDPE on the mica surface was observed and it exhibited strong matrix molecular weight dependence.Obvious transcrystalline structure was found in the composite with low molecular weight HDPE,whereas it was hard to be detected in the composites with increased HDPE molecular weight.The best reinforcement effect in the composite with low molecular weight HDPE can be understood as mainly due to substantially improved interfacial adhesion between matrix and mica filler,which arises from the transcrystallization mechanism.  相似文献   

5.
Starting from calcium sulfate (gypsum) as fermentation by‐product of lactic acid production process, high performance composites have been produced by melt‐blending polylactide (PLA, L/D isomer ratio of 96:4) and β‐anhydrite II (AII) filler, that is, calcium sulfate hemihydrate previously dehydrated at 500 °C. Characterized by attractive mechanical and thermal properties due to good filler dispersion throughout the polyester matrix, these composites are interesting for potential use as biodegradable rigid packaging. Physical characterization of selected composites filled with 20 and 40 wt % AII has been performed and compared to processed unfilled PLA with similar amorphous structure. State of dispersion of the filler particles and interphase characteristic features have been investigated using light microscopy (LM) and scanning electron microscopy (SEM). Addition of AII did not decrease PLA thermal stability as revealed by thermogravimetry analyses (TGA) and allowed reaching a slight increase of PLA crystallizability during melt crystallization and upon heating from the glassy, amorphous state (DSC). It was found by thermomechanical measurements (DMTA) that the AII filler increased pronouncedly storage modulus (E′) of the composites in comparison with PLA in a broad temperature range. The X‐ray investigations showed stable/unchanged crystallographic structure of AII during processing with molten PLA and in the composite system. The notable thermal and mechanical properties of PLA–AII composites are accounted for by the good filler dispersion throughout the polyester matrix confirmed by morphological studies, system stability, and favorable interactions between components. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2770–2780, 2007  相似文献   

6.
This study presents an innovative approach to the production of reinforced elastomer composites filled with carbon black Printex XE-2B, using the calendering process and ionic liquids (ILs) as dispersing agents. The effect of Printex XE-2B on the mechanical and electrical properties of acrylonitrile-butadiene rubber (NBR) composites was compared to that of conventional carbon black Humex N339. It was found that the highly structured Printex XE-2B significantly enhanced both the mechanical and electrical properties of the NBR composites, in contrast to standard Humex N339. To obtain uniform filler dispersion in the polymer matrix, several different ILs were employed as dispersing agents. The application of ILs had a considerable effect on the properties of the prepared composites, due to the improved dispersion of the filler particles in the composite matrix, which favored the formation of ‘conductive paths.’ Importantly, the prepared NBR/Printex XE-2B/IL composites were found to have reversible and repeatable electrical properties following exposure to chloroform vapors.  相似文献   

7.
Common nano clay fillers have layered structure. Some nano clays like Attapulgite (AT), Sepiolite have rod like fibrous structure. Compared to layered structured clay fibrous clay AT can undergo better dispersion in polymer matrix leading to better improvement in composite properties. Chemical modifications of AT are done through amine treatment as well as by amine+silane treatment to get chemically modified fillers AAT and SAT respectively. In the present investigation, nano composites are prepared using natural rubber (NR) filled with AT, AAT and SAT. Three different loadings of each filler are used namely 2.5, 5, and 10 phr (parts per hundred of rubber). Mechanical properties like tensile strength, elongation at break increase with the increase in filler loading up to 5 phr there after these properties marginally fall when loading is increased to 10 phr due to problem of filler dispersion at higher loading. However, modulus at 300% elongation and tear strength increases with the increase in filler loading up to 10 phr. Very similar trend can also be observed for composites with chemically modified fillers, AAT and SAT. But the degree of reinforcement is higher in the case of AAT and SAT compared to that of unmodified filler AT for the same filler loading. This difference is mainly due to better polymer-filler interaction and filler dispersion in the case of chemically modified clays AAT and SAT compared to unmodified AT. Tear strength of composites increases remarkably with the addition of AT and which is further enhanced when chemically modified clays AAT and SAT are added. Dynamic-mechanical analyses of different clay composites give idea about the difference in the degree of polymer–filler interaction due to chemical treatment of filler.  相似文献   

8.
Stress relaxation and moduli of elasticity of the composite system crosslinked poly(2-hydroxyethyl methacrylate) (PHEMA)–glass beads were studied dry and swollen in water to equilibrium state over the temperature range 5–170°C. The moduli of the composites in the dry state increased with increasing filler concentration, while those of the composites measured in the swollen state up to the volume concentration of the filler v ? 0.15 decreased. In this respect the composites behaved as porous systems, i.e., as polymers with macroscopic defects. This effect was explained as a consequence of weak filler–matrix interaction. The results were compared with the existing theories of moduli of the composite materials.  相似文献   

9.
Summary In the TG analysis of the bio-composites, their thermal stability was found to slightly decrease and the ash content to increase as the lignocellulosic filler loading increased. This is a logical consequence of the lower thermal stability of the lignocellulosic filler compared to that of the matrix polymer. The dispersion and interfacial adhesion between the lignocellulosic filler and thermoplastic polymer were important factors affecting the thermal stability of the composite system. In order to improve their compatibility and interfacial adhesion, the incorporation of a compatibilizing agent into the lignocellulosic material-thermoplastic polymer composites is recommended. In the TMA analysis, the thermal expansion of the composites was found to decrease with increasing filler loading and incorporating compatibilizing agent. Lignocellulosic filler is a suitable material for preventing the thermal expansion of the composite materials caused by atmospheric changes.  相似文献   

10.
Carbon nanofiber (CNF) composites have the potential for creating inexpensive, semiconducting polymers. These composites require a homogeneous dispersion within the polymer. Many groups have focused on high shear methods such as twin screw extrusion. Although high shear methods produce a homogeneous dispersion, the aspect ratio of the nanofibers is reduced by the mechanical force. In this report, we present results for low shear composite formation via in situ polymerization of cyclic oligomeric carbonates. The composites were characterized by thermal gravimetric analysis, electrical conductivity, scanning electron microscopy and transmission electron microscopy. The composites exhibit minimal aggregation of the carbon nanofibers even at high weight percents. The polycarbonate/CNF composites exhibit an electrical conductivity percolation threshold of 6.3 wt% which is higher compared with similar CNF composites. The composites also show an increase in thermal stability of 40 °C as the CNF loading increases from 0 to 9 wt%.  相似文献   

11.
The polymerization of rigid rod polymer precursors in a reactive matrix precursor, which is later cured in the mold, constitutes the in situ process. A poly-azomethine (PAM) was used as the rigid rod molecule. The resin used was an epoxy. We discuss the prediction of mechanical properties using micromechanics equations for chopped fiber composites. The chemistry used to synthesize the rigid rod polymer PAM in the epoxy precursor is reviewed. Approaches to better control the cure of these epoxy systems through cure kinetics and cure rheology studies completes the thermoset in situ molecular composite process. There was a 71% increase in tensile modulus in comparison to that of the neat epoxy resin. Molecular modeling simulations and continuum mechanics are used to help understand these findings. PAM/epoxy systems were used as a matrix material in the fabrication of unidirectional glass fiber/(PAM/epoxy) structural composites. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
Thermogravimetry was used to investigate the effects of different inorganic functional fillers on the heat resistance of polymer matrices. The kinetic parameters of thermal oxidative degradation were shown to depend on the polymer, the chemical composition of the filler surface, the filler concentration, and the processing method, which determines the distribution of filler particles in the polymer matrix. Magnetic fillers (carbonyl iron, and hexaferrites of different structural types) were shown to be chemically active fillers, increasing the heat resistance of siliconorganic polymers. Their stabilizing effect is due to blocking of the end silanol groups and macroradicals by the surface of the filler and non-chain inhibition of thermal oxidative degradation. In the case of fiber-forming polymers (UHMWPE, PVOH and PAN), most magnetic fillers are chemically inert, but at concentrations of 30–50 vol% they increase the heat resistance of the composite. Addition of carbon black increased the heat resistance of the thermoplastic matrix. The dependence of the thermal degradation onset temperature on the kaolin concentration in the polyolefin matrix exhibited a maximum. Analysis of the experimental results demonstrated the operating temperature ranges for different composites, and their maximum operating temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
An experimental study was carried out to investigate the effects of coupling agents on the rheological properties of kaolin filled polyamide 6(PA6). We have investigated the state of dispersion and interfacial interaction of the filled systems, using 'h:anning electron microscopy (SEM) and Molau test, respectively. It is found that the addition of the coupling agents to the PA6/ kaolin (20 wt percent) significantly decreases the melt viscosity and the melt elasticity (first normal stress difference). Moreover, the states of dispersion and the polymer/filler interactions have significant influences on the rheological properties of kaolin/PA6 systems. The rheological behavior of KH550 kaolin /PA6 system is different from that of KH560 kaolin/PA6 system, although chemical reactions have taken place between the surface of KH550 kaolin (or KH560 kaolin) and PA6 matrix during melt processing. This is attributable, in part, to the differences in the state of dispersion of kaolins in PA6 matrix and, to a great extent, to the differences in the extent of chemical reactions that have taken place between the filler and polymer matrix.  相似文献   

14.
纳米羟基磷灰石/胶原复合材料制备方法比较研究   总被引:4,自引:0,他引:4  
低温下,通过将水热合成的纳米羟基磷灰石浆料与中性胶原溶胶共混和在中性胶原中原位形成羟基磷灰石两种方法制备羟基磷灰石/胶原复合材料,采用XRD、FTIR、扫描电镜、透射电镜和力学性能测试等方法对两种复合材料的特性进行了表征。通过对两种方法制备的复合材料的特性进行比较,发现两种方法均制备得到了纳米羟基磷灰石/胶原复合材料,复合材料在晶相组成、化学组成、纳米羟基磷灰石晶体尺寸、胶原纤维的结构等方面都与天然骨相似。但原位合成纳米羟基磷灰石晶体的结晶度比水热合成的纳米羟基磷灰石更接近于自然骨,原位合成的羟基磷灰石/胶原复合材料的均匀性、界面结合紧密度、力学性能等方面均优于共混法。原位合成法是改善纳米羟基磷灰石/胶原复合材料均匀性和力学性能的有效方法。  相似文献   

15.
The effects of the partial replacement of silica or calcium carbonate (CaCO3) by bentonite (Bt) on the curing behaviour, tensile and dynamic mechanical properties and morphological characteristics of ethylene propylene diene monomer (EPDM) composites were studied. EPDM/silica/Bt and EPDM/CaCO3/Bt composites containing five different EPDM/filler/Bt loadings (i.e., 100/30/0, 100/25/5, 100/15/15, 100/5/25 and 100/0/30 parts per hundred rubber (phr)) were prepared using a laboratory scale two-roll mill. Results show that the optimum cure (t90) and scorch (tS2) time decreased, while the cure rate index (CRI) increased for both composites with increasing Bt loading. The tensile properties of EPDM/CaCO3/Bt composites increased with the replacement of CaCO3 by Bt from 0 to 30 phr of Bt. For EPDM/silica/Bt composites, the maximum tensile strength and Eb were obtained at a Bt loading of 15 phr, with enhanced tensile modulus on further increase of Bt loading. The dynamic mechanical studies revealed a strong rubber-filler interaction with increasing Bt loading in both composites, which is manifested by the lowering of tan δ at the glass transition temperature (Tg) for EPDM/CaCO3/Bt composites and tan δ at 40 °C for EPDM/silica/Bt composites. Scanning electron microscopy (SEM) micrographs proved that incorporation of 15 phr Bt improves the dispersion of silica and enhances the interaction between silica and the EPDM matrix.  相似文献   

16.
<正> 无机填料填充复合材料的性能,除了依赖于聚合物基体和填料固有的内在性质外,很大程度上依赖于它们之间的界面性质。因此,研究聚合物/填料界面相互作用,对合理地设计具有优良性能的复合材料具有十分重要的意义。 目前,还很难对粉末填料与聚合物基体之间界面相互作用进行定量的研究,而且关于这方面的报道也较少。本文利用接触角法测定了高岭土填料和尼龙6基体的表面自由能、界面张力、粘附功等热力学参数,对高岭土与尼龙6之间界面相互作用与复合材料力学性能、流变行为的关系进行了分析和探讨。  相似文献   

17.
The intumescent flame retardant (IFR) filled polypropylene (PP) composites were prepared using a twin‐screw extruder. The tensile and impact fracture behavior of the composites were measured at room temperature. It was found that the Young's modulus increased roughly, while the tensile strength decreased slightly with increasing the IFR weight fraction; the toughening effect of the filler on the PP resin was significant. Both the V‐notched Izod impact strength and the V‐notched Charpy impact strength of the PP/IFR composites showed a nonlinear increase with increasing the filler weight fraction (φf) as φf was less than 20%, then it decreased. The limited oxygen index of the composites increases nonlinearly with increasing φf. The relationship between them obeyed a quadratic equation. The impact fracture surface was observed by means of a scanning electronic microscope to understand the toughening mechanisms for the composite systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This work focuses on the preparation of copper nanoparticles-modified polyamide 6 composites (denoted as nano-Cu/PA6) by in situ polymerization, with which cupric oxide as metallic copper source is directly reduced to metallic copper in the process of the opening-ring polymerization of ε-caprolactam only using the reducing atmosphere of reaction system. The obtained composites are characterized by means of transmission electron microscopy, X-ray diffraction, laser granulometry instrument, and ultraviolet–visible absorption spectroscopy. Moreover, the friction and wear resistance, mechanical strength, and antistatic performance of as-prepared composites are also readily evaluated. The results show that cupric oxide as filler is reduced to metallic copper and the as-reduced copper nanoparticles with 4–5-nm-size clusters separately disperse in polyamide 6 (PA6) matrix. Additionally, the addition content (mass fraction) of cupric oxide has significant effect on the crystalline form of PA6, and γ crystalline form of PA6 is predominant when higher dosage of CuO is introduced to fabricating nano-Cu/PA6 composites. Moreover, introducing a proper amount of CuO filler favors to generate nano-Cu/PA6 composites with improved mechanical properties and wear resistance. Particularly, nano-Cu/PA6 composite prepared at a CuO content of 0.5 % possesses the best tensile strength and wear resistance, showing promising application as a functional polymer–matrix composite.  相似文献   

19.
The influence of Shorea robusta natural filler loading (5, 10, 15, 20, and 25 v/v%) on the mechanical, dynamic mechanical, biodegradability, and thermal stability of the polyester composite was analyzed. The composites were fabricated using hand lay-up method. The maximum mechanical properties, storage modulus, and glass transition temperature were observed for the composite with 20 v/v% filler. The peak height of Tanδ was found to be lesser for the same. Thermal analysis results revealed that the thermal stability of composite increased with the incorporation of Shorea robusta as natural filler. Biodegradability testing showed that the addition of filler resulted in weight loss of the composite under soil burial test.  相似文献   

20.
Uniform dispersion of graphene nanosheets (GNS) in a polymer matrix with strong filler–matrix interfacial interaction, preserving intrinsic material properties of GNS, is the critical factor for application of GNS in polymer composites. In this work, a novel reactive copolymer VCz–GMA containing carbazole and epoxide group was designed, synthesized and employed to noncovalently functionalize GNS for preparing epoxy nanocomposites with enhanced mechanical properties. The presence of carbazole groups in VCz–GMA enables the tight absorption of copolymer on to graphene surface via π–π stacking interaction, as evidenced by Raman and fluorescence spectroscopy, whereas the epoxide segments chemically reacts with the epoxy matrix, improving the compatibility and interaction of graphene with epoxy matrix. As a result, the VCz–GMA–GNS/epoxy composite showed a remarkable enhancement in both mechanical and thermal property than either the pure epoxy or the graphene/epoxy composites. The incorporation of 0.35 wt % VCz–GMA–GNS yields a tensile strength of 55.72 MPa and elongation at break of 3.45, which are 42 and 191% higher than the value of pure epoxy, respectively. Increased glass transition temperature and thermal stability of the epoxy composites were also observed. In addition, a significant enhancement in thermal conductivity was achieved with only 1 wt % VCz–GMA–GNS loading. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2776–2785  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号