首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The singlet excited-state dynamics in poly[(9,9-dioctylfluorene)-(dibenzothiophene-S,S-dioxide)] (PFSx ) random copolymers with different contents of dibenzothiophene-S,S-dioxide (S) units have been studied by steady-state and time resolved fluorescence spectroscopies. Emission from PFSx copolymers shows a pronounced solvatochromism in polar chloroform, relative to the less polar toluene. An excited intramolecular charge transfer state (ICT) is stabilized by dipole-dipole interactions with the polar solvent cage, and possibly accompanied by conformational rearrangement of the molecular structure, in complete analogy with their small oligomer counterparts. The spectral dynamics clearly show that the ICT stabilization is strongly affected by the surrounding medium. In the solid state, emission from PFSx copolymers depends on the content of S units, showing an increase of inhomogeneous broadening and a red shift of the optical transitions. This observation is consistent with stabilization of the emissive ICT state, by the local reorientation of the surrounding molecules at the location of the excited chromophore, which results in favorable dipole-dipole interactions driven by the increase in the dielectric constant of the bulk polymer matrix with increasing S content, in analogy to what happens in polar solvent studies. Furthermore, in clear agreement with the interpretation described above, a strong increase in the emission quantum efficiency is observed in the solid state by decreasing the temperature and freezing out the molecular torsions and dipole-dipole interactions necessary to stabilize the ICT state.  相似文献   

2.
Studies on interactions between amphiphilic block copolymers and lipid membranes have been focused traditionally on ABA triblock copolymers of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide), widely due to their commercial availability. However, new architectures of amphiphilic block copolymer have been synthesized in recent years partially taking advantage of new polymerization techniques. This review focuses on amphiphilic block copolymers with potential biological activity and on model membrane systems used for studying interactions with such block copolymers. Experimental methods to study block copolymer–phospholipid interactions in Langmuir monolayers, liposomes, and planar bilayers are summarized. This work is intended to convey a better understanding of amphiphilic block copolymers used for in vitro and in vivo experiments in medicine and pharmacy. Recent developments and open questions are addressed.  相似文献   

3.
Poly-p-methoxyacrylophenone (PPMeOAP) and its copolymers with styrene (PMe-OAP–S) and with methyl methacrylate (PMeOAP–MMA) were prepared. The photolysis in solution with 313 and 366 nm radiation was followed viscometrically. In solvents such as chlorobenzene and ethyl benzoate, random main-chain scission from n–π* excited triplet state occurs. The lowest excited triplet state in formic acid and in ethylene chlorhydrin is of the character π–π*, from which no main-chain scission occurs. In solvents in which destruction occurs, the main-chain scission is retarded by triplet quenchers, such as naphthalene, 2,5-dimethyl-2,4-hexadiene, and biphenyl. Quenching experiments indicate that the lifetime for the excited triplet state of PPMeOAP is 25 times that for polyacrylophenone. In PMeOAP–MMA copolymers, quantum yields of main-chain scissions were lower and lifetimes of excited triplets were longer than in PPMeOAP, due to hindered intramolecular photoreaction.  相似文献   

4.
The microenvironments of the cationic copolymers of styrene and vinylbenzenetrialkylammonium halides were explored by use of fluorescence spectroscopy. 5-Dimethylamino-1-naphthalenesulfonate (DANS) and 1-pyrenebutyrate (PB) were the fluorescent probes selected to bind to the polymers. The fluorescence energy of the former responds to the polarity or hydrophobicity of the microenvironment, whereas the absorption and fluorescence of the latter reveal the extent of ground-state and excited-state interactions. Polyelectrolyte coiling occurs in proportion to the fraction of binding sites occupied with charge-neutralizing, probe molecules. The bound DANS probe shows that coiling makes the binding-site environment more hydrophobic, and the bound PB probe shows that coiling facilitates excimer formation not only with nearest-neighbor pyrene moieties, but also with non-nearest neighbors. With methyl groups at the quaternary nitrogen binding sites, pyrene moiety interactions preceding excimer fluorescence occur in both ground and excited states. When the methyl groups are replaced with butyl or pentyl groups, pyrene excimers still form in the excited state, but the weak, hydrophobic interactions of the pyrene ground state decrease, because the longer alkyl groups serve as hosts for the hydrophobic pyrene moieties.  相似文献   

5.
We present a self-consistent field theory model for the self-assembly behavior of rod-coil block copolymers. The orientational interactions between the rods were modeled through a Maier-Saupe interaction, while the enthalpic interactions between rods and coils were modeled through a standard Flory-Huggins approach. We outline a "real-space" numerical approach to solve the self-consistent field equations for such rod-coil block copolymers. A major focus of our work is upon the nonlamellar phases observed in the experiments on such polymers. To develop a physical understanding of these phases and their regimes of occurrence, we compute the two-dimensional phase diagram for our model. The latter shows significant departures from the one-dimensional phase diagram, but matches qualitatively with the existing experimental results. We also present scaling arguments that rationalize the numerical results for the self-assembly behavior.  相似文献   

6.
Dilute solution properties of linear (SI)3 six-block copolymers of styrene and isoprene are compared to those of random, two-block, and three-block copolymers of the same system. All the copolymers were prepared with sec-butyllithium in benzene. The microstructure of the polyisoprene blocks is close to that of homopolyisoprene prepared under the same conditions. In contrast, the random copolymer shows a larger amount of trans-1,4 isoprene units. The intrinsic viscosities of the copolymers in methylisobutyl ketone, a poor solvent for both polystyrene and polyisoprene, and in toluene, a good solvent for both homopolymers, are examined on the basis of the Fox–Flory relation for homopolymers. All the copolymers behave similarly in each solvent. In methylisobutyl ketone, the viscosity results indicate a random coil conformation with a small expansion owing to the extra repulsive interactions between the dissimilar units. In all cases, the heterocontact repulsive interactions are small and can be characterized by an interaction parameter χab close to 0.025. In toluene, the perturbation caused by the heterocontacts becomes negligible and the expansion factor αη can be predicted from a weighted average of those of the parent homopolymers of the same molecular weight as the copolymer.  相似文献   

7.
Poly-p-ethylacrylophenone (PPEtAP) and poly-p-chloroacrylophenone (PPClAP) and their copolymers with styrene (PEtAP/S) and (PClAP/S) and with methyl methacrylate (PEtAP/MMA) and (PClAP/MMA) were prepared. Quantum yields of main-chain scissions at 366 nm at room temperature in benzene solution are of the same order as those of the unsubstituted polyacrylophenone and its copolymers. Substitution with chlorine and ethyl group in the para position compared to the unsubstituted polyacrylophenone and its copolymers leads to an increase of the lifetime for the n–π* excited triplet state, as is evident from the measured quenching constants of photolysis. The low-temperature emission spectra of the copolymers are similar to the spectra of the model compounds in a polymer film. For the homopolymer, however, the character of the emission spectrum changes considerably.  相似文献   

8.
The incorporation of comonomers bearing functional groups yields butadiene copolymers capable of hydrogen bonding. Three such butadiene-based materials were studied: methacrylic acid copolymers, 2-methyl-5-vinylpyridine copolymers, and stoichiometric mixtures of the acidic and basic copolymers. The elastic effects of intermolecular hydrogen bonding were determined by comparing the simple weighted average of the moduli of the parent copolymers with the observed modulus of their stoichiometric mixture. The results show that measurable increases in the moduli of the mixtures persist even above the glass temperature Tg, which is itself elevated in the mixtures. These increases may be treated as temperature-dependent temporary crosslinks.  相似文献   

9.
We prepared various copolymers containing styrene and methacrylates to examine their miscibility with polycarbonates such as bisphenol A polycarbonate (PC), dimethylpolycarbonate (DMPC), and tetramethylpolycarbonate (TMPC). Among the various copolymers examined, poly(methyl methacrylate‐co‐cyclohexylmethacrylate) [P(MMA–CHMA)] copolymers containing proper amounts of cyclohexylmethacrylate (CHMA) formed miscible blends with PC and DMPC, whereas TMPC did not form a miscible blend with P(MMA–CHMA). However, TMPC was miscible with poly(styrene‐co‐cyclohexylmethacrylate) [P(S–CHMA)] copolymers containing less than about 40 wt % CHMA, whereas PC and DMPC were always immiscible with P(S–CHMA). Miscible blends exhibited lower critical solution temperature (LCST)‐type phase behavior. Binary interaction energies were calculated from the observed phase boundaries with lattice–fluid theory combined with a binary interaction model. The quantitative interaction energy of each binary pair indicated that the phenyl ring substitution of polycarbonate with methyl groups did not lead to interactions that were favorable for miscibility with methyl methacrylate (MMA) and CHMA, but it did lead to favorable interactions with styrene. The addition of CHMA to MMA initially increased the LCST but ultimately led to immiscibility with PC and DMPC; however, addition of CHMA to styrene always decreased the LCST with TMPC. The increased LCST of PC or DMPC blends stemmed from intramolecular repulsion between MMA and CHMA, whereas the decreased LCST of TMPC/P(S–CHMA) blends with CHMA content came from negative interaction energy between styrene and CHMA. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1948–1955, 2001  相似文献   

10.
Chloro- and lithio-terminated diorganosilylene oligomers were coupled to form block copolymers that were soluble in common solvents and deposited coherent films from solution. Copolymer UV (ultraviolet) spectra showed a red shift in absorption maxima attributed to increased silicon chain length and phenyl-silicon spine interactions.  相似文献   

11.
We synthesized novel silicon-based alternating copolymers for tunable electroluminescent (EL) colors by Heck synthetic method. Their thermal, photophysical and electroluminescent properties were studied. Most of them exhibited a blue-green EL color at the operating voltage of lower than 12 V. Unusually, we observed the white EL color from a EL device based on SiPhPVK. From photophysical studies and the time-resolved PL spectroscopies, it might be attributed to the formation of stabilized excited state in SiPhPVK. Furthermore, in order to reduce the operating voltage of their LED with increasing the electron affinity of the main chain in silicon-based alternating copolymers, we synthesized the silicon-based copolymers containing electron transporting oxadiazole units in main chain. We also studied their photophysical and electroluminescent properties.  相似文献   

12.
We have developed a hierarchical process that combines linear triblock copolymers into concentric globular subunits through strong chemical bonds and is followed by their supramolecular assembly via weak noncovalent interactions to afford one-dimensionally assembled, dynamic cylindrical nanostructures. The molecular brush architecture forces triblock copolymers to adopt intramolecular interactions within confined frameworks and then drives their intermolecular interactions in the mixtures of organic solvent and water. In contrast, the triblock copolymers, when not preconnected into the molecular brush architectures, organize only into globular assemblies.  相似文献   

13.
Supramolecular copolymers are an emerging class of materials, which bring together different properties and functionalities of multiple components via noncovalent interactions. While it is widely acknowledged that the repeating unit sequence plays an essential role on the performance of these materials, mastering and tuning the supramolecular copolymer sequence is still an open challenge. To date, only statistical supramolecular copolymers have been reported using cyclic peptide–polymer conjugates as building blocks. To enrich the diversity of tubular supramolecular copolymers, we report here a strategy of controlling their sequences by introducing an extra complementary noncovalent interaction. Hence, two conjugates bearing one electron donor and one electron acceptor, respectively, are designed. The two conjugates can individually assemble into tubular supramolecular homopolymers driven by the multiple hydrogen bonding interactions between cyclic peptides. However, the complementary charge transfer interaction between the electron donor and acceptor makes each conjugate more favorable for complexing with its counterpart, resulting in an alternating sequence of the supramolecular copolymer. Following the same principle, more functional supramolecular alternating copolymers are expected to be designed and constructed via other complementary noncovalent interactions (electrostatic interactions, metal coordination interactions, and host–guest interactions, etc.).

Tubular supramolecular alternating copolymers using cyclic peptide–polymer conjugates are synthesized by the introduction of an extra complementary noncovalent interaction.  相似文献   

14.
Block copolymers of ethylene and butadiene have been prepared to study their properties. The method of preparation of polybutadiene, polyethylene, and block copolymers of ethylene and butadiene with n-butyl lithium-tetramethyl ethylene diamine complex is outlined. Kinetic studies have been reported elsewhere and these are assessed to determine that suitability of the system to produce monodispersed “living” chains so that simple correlations between physical properties and molecular weight can be made. The properties were somewhat restricted by the 1,2-microstructure of the butadiene block.  相似文献   

15.
Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.  相似文献   

16.
Functional photoactive organic-inorganic block copolymers of poly(methylphenylsilane) (PMPS) and disperse red 1 methacrylate (DR1MA) were synthesized in a quartz tube using UV-technique. The synthesized block copolymers were characterized by FTIR, NMR, GPC and thermal analyses and studied for their optical and photoluminescence properties. The weight average and number average molecular weights of such a synthesized block copolymer are 2.47 × 103 and 2.27 × 103, respectively. The appearance of two glass transition temperatures indicated the synthesized polymers as block copolymers. The functional organic-inorganic block copolymers exhibited optical absorbance at 276 nm due to aromatic ring associated with both the blocks and at 325 nm due to σ-electron delocalization of Si-Si chain of PMPS block. Also, the optical absorbance appeared at 472 nm is due to combining the contribution of n-π* and first π-π* charge transfer electronic transition of the azobenzene chromophore of DR1MA unit. Two photoemissions were observed at 307 nm and 415 nm when such a polymer was excited at 275 nm. The photoluminescence was also observed at 415 nm when excited by 325 nm. The multi-emission spectra appeared between 510 nm to 580 nm are presumed to be due to exciton coupling between azobenzene chromophore of DR1MA and and Si-Si σ-conjugation of PMPS block. The synthesized copolymers are thermally stable up to 260°C. Such functional photoactive block copolymers may find novel optoelectronic application.  相似文献   

17.
Three new topology-varied rod-coil block copolymers, comprising the same oligo(p-phenyleneethynylene) (OPE) rod components and the same coil components, were synthesized by atom-transfer radical polymerization. Their photophysical properties were systematically studied and compared in consideration of their solid-state structures and self-assembly abilities. These copolymers have similar intrinsic photophysical properties to the OPE rods, as reflected in dilute solution. However, their photophysical properties in the solid state are manipulated to be dissimilar by supramolecular organization. Wide-angle X-ray diffraction (WAXD) and atomic force microscopy (AFM) data demonstrate that these copolymers possess different self-assembly abilities due to the molecular-architecture-dependent pi-pi interactions of the rods. Hence, the aggregates in the solid state are formed with a different mechanism for these copolymers, bringing about the discrepancy in the solid-state luminescent properties.  相似文献   

18.
Block copolymers and liquid crystals are separately known to order at different length scales. Various types of molecular interactions in liquid crystalline block copolymers determine complex phase behaviors and states of order, and thereby can provide a way of tailoring the material properties. Examples of liquid crystalline block copolymers will be discussed as they may offer unique opportunities for both theoretical and experimental research.  相似文献   

19.
Symmetric diblock copolymers in dilute solution were examined by means of Monte Carlo simulations on a cubic lattice with respect to chain- and block dimensions, shape, local structure and number of contacts. The solvent was either a common good one, a common θ-solvent or a selective one for the two blocks. In all cases, repulsive interactions are operative between the blocks. In addition, the underlying homopolymers (athermal and θ) were divided into two parts (and treated as a block copolymer) for comparison. Chain-length was varied from 40 to 1280 segments leading to the expected values for the critical exponent 2v ≈ 1.2 for good solvent quality and 2v ≈ 1.0 for θ-solvent. Copolymers in a selective solvent scale with an intermediate exponent, 2v ≈ 1.13. The deviation of the mean squared dimensions of the copolymers from the sum of those of two homopolymers of the same length and for the same solvent quality as the blocks is largest for block copolymers in a common θ-solvent (where it exceeds 20%), while the blocks themselves have mostly the same dimensions as their underlying homopolymers of equal length. The shape of the copolymers, expressed by the parameter δ (asphericity) becomes more rod-like with increasing chain-length if there are (compact) θ-blocks in the molecule which are subject to mutual repulsive interaction. In these cases, θ exceeds the value of the homopolymers in the limit of infinite chain-length. The number of contacts per segment approaches a limiting value with increasing chain-length which is ≈0.20 for athermal chains and athermal blocks. For θ-chains and θ-blocks, a limiting value is not yet reached within the range of chainlengths investigated. The number of contacts per segment between two different blocks quickly tends to zero with increasing chain-length.  相似文献   

20.
Photodimerization of Polyacrylic and polymethacrylic derivatives with different pendant thymine unit content was studied in dimethylformamide solution. The quantum efficiency of thymine base for the photodimerization increased with increasing thymine content in the copolymers. The quenching study, which used isoprene as the quencher, revealed that the photodimerization resulted from excited singlet state increases with increasing thymine content. The photochemical results were discussed in terms of self-association of thymine bases in the polymer chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号