首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Side-chain liquid crystalline (SCLC) silphenylene-siloxane polymers with a phenyl benzoate mesogenic group and polymethylene spacers were prepared and characterized, and their properties were compared with those of equivalent SCLC polymers, SCLCPs, with a biphenyl mesogenic group. With identical spacers and terminal substituents, the melting temperatures of the former were much lower, but the isotropization temperatures were lowered to a lesser extent, than those of the latter, and, consequently, a more thermally stable nematic phase was obtained for the former. Both types of SCLCPs formed nematic phases, while polymethylsiloxanes with the same side-chain mesogens exhibited smectic phases with wider temperature ranges. The lower thermal stability of the mesophases in the silphenylene-siloxane SCLCPs compared to those of the SCLC polymethylsiloxanes can be attributed to both the rigidity of the backbone and the greater separation of the side-chains along the main chains of the former.  相似文献   

2.
A new homologous series of liquid crystalline (LC) polymethacrylates, the poly[ω-(2-phenoxycarbonyl-naphthalene-6-yloxy)alkyl methacrylate]s, in which the length of the alkyl spacer is varied between 3 and 12 methylene units, have been synthesized by free-radical polymerization. The prepared polymers were studied by IR and 1H-NMR spectroscopy, viscosity measurements, differential scanning calorimetry (DSC), and polarized microscopy. Polymers with 3 or 4 methylene units spacer were glassy in nature, whereas those with 5–12 methylene units spacer exhibited smectic behavior. The glass transition temperatures decrease on increasing spacer length. The isotropization temperatures and the corresponding transition entropies showed an odd–even effect, with the odd members exhibiting the higher values. This effect attenuates on increasing spacer length. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2391–2399, 1999  相似文献   

3.
Three series of novel thermotropic liquid crystalline polyurethane elastomers (TLCPUEs) were studied. Hard segments were formed by using hexamethylene diisocyanate (HDI) reacted with a mesogenic unit, benzene-1,4-di(4-iminophenoxy-n-hexanol), which also acted as a chain extender. Three diols: 1,10-decanediol,poly(oxytetramethylene) glycol (PTMEG) M n = 1000 and PTMEG M n = 2000 were used as the soft segments. The effects of soft segments of polyurethanes on the liquid crystalline behavior were studied. Higher molecular weight TLCPUEs were obtained by adding 30?50 mol % of mesogenic segments to diisocyanates. In contrast to a conventional chain extender such as 1,2-ethylene glycol or 1,4-butyl glycol, the synthesized polyurethane elastomers exhibited a mesophase transition by using a mesogenic unit as the chain extender. Mesophase was found for all synthesized LC polyurethanes except of polymers H2-A-12 and H2-A-7. The structures and the thermal properties of all synthesized TLCPUEs were studied by using FTIR spectroscopy, wide-angle x-ray diffraction (WAXD) and DSC measurements, a polarizing microscope equipped with a heating stage, dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). Mechanical properties were also examined by using a tensilemeter. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
5.
A series of polynorbornenes (PNBEs) with 1,4‐bis[(3′‐fluoro‐4′‐n‐alkoxyphenyl)ethynyl]benzene mesogens (n = 1–12, where n is the number of methylene units in the substituents of the mesogens) laterally attached to polymer backbones through a one‐carbon spacer were previously synthesized by the ring‐opening metathesis polymerization of the corresponding norbornene‐based monomers. Differential scanning calorimetric results showed that the first‐order transition temperatures exhibit an odd–even alternation, especially when PNBEs have lower values of n. PNBE (n = 8), similar to the previously studied PNBEs (n = 9–12), shows a smectic C (SC) phase at room temperature (Kim, Pugh, and Cheng, Macromolecules, 33, 8983, 2000.) According to one‐ and two‐dimensional wide‐angle X‐ray scattering experiments, PNBEs (n = 2–7) exhibit a nematic (N) phase with SC fluctuations, whereas for PNBE (n = 1), only an N phase is observed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 3029–3037, 2001  相似文献   

6.
《先进技术聚合物》2018,29(3):1039-1047
A series of side‐chain liquid crystal polymers (SCLCPs) without the spacer, named poly[ω‐(4′‐n‐alkyl oxybiphenyl‐4‐oxy)methacrylate (PMBiCm, m = 1, 2, 4, 6, 8, 10, 12, 14, 16, and 18), have been synthesized. The novel polymer organogels were prepared by introducing PMBiCm into common organic solvents. Solubility and gel properties of polymer organogelators differ widely according to the nature of the solvents. In aromatic solvents, PMBiCm completely dissolved in solvent due to good compatibility between biphenyl mesogen group and aromatic solvents. Poly[ω‐(4′‐n‐alkyl oxybiphenyl‐4‐oxy)methacrylate were still insoluble in polar solvents such as acetone, ethanol, DMF, ethylene glycol, and n‐butanol. This behavior resulted from mismatch of solubility parameter between PMBiCm and solvent. Considering the factors of solvent, we have systematically studied 3 organic solvents with different polarities (butyl acetate, n‐butyl amine, and n‐heptane). It is found that the length of the alkoxy tail chain of the SCLCPs has significant influence on gelability and gel thermal stability. In further studies discussed by UV‐Vis spectroscopy, the results revealed that the π‐π stacking interaction of the biphenyl mesogens might be the key factor for guiding the self‐assembly processes and the polymer gel formation. This work is useful to comprehending physical mechanism of polymer organogels. Meanwhile, those expand SCLCPs to a wide range of applications.  相似文献   

7.
Two series of monomers, 4-[4-(allyloxy)benzoyloxy]phenyl-3-(perfluoro-n-alkyl)ethyl propanoates and 2-(perfluoro-n-alkyl)ethyl-4-[4-(undec-10-en-1-oyloxy)-benzoyloxy] benzoates have been synthesised. These compounds contain a fluorinated chain obtained from 2-(perfluoro-n-alkyl)ethanol or from 2-(perfluoro-n-alkyl)ethyliodide, and an aliphatic chain containing a double bond attached to a mesogenic moiety. Their hydrosilylation with polymethylhydrogenosiloxane gives the corresponding polysiloxanes with a spacer with three or ten methylene units. These new fluorinated compounds are characterized by a combination of techniques consisting of differential scanning calorimetry (DSC) and thermal optical polarized microscopy. All the monomers exhibited smectogenic properties of type A but for the monomers with a long spacer between the unsaturated function and the mesogenic core (compounds B), the mesophase range decreases dramatically. All of the corresponding polysiloxanes exhibited a liquid crystalline behaviour over a wide temperature range. The influence of the fluorinated chain lengthening leads for the monomers and the polymers to an increasing of the transition temperatures. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4487–4496, 1999  相似文献   

8.
Four series of thermotropic polyurethane elastomers (TPUEs) were synthesized in this study. The hard segments were formed by using 4,4′-methylenedicyclohexyl diisocyanate (H12MDI) reacted with various mesogenic units, such as benzene-1,4-di(4-iminophenoxy-n-hexanol), benzene-1,4-di(4-iminophenol), and 3,3′-(4,4′-biphenylene)dipropanol, which also acted as the chain extender. Poly(oxytetramethylene)glycols (PTMEGs), PTMEG-2000 (Mn 2,000) and PTMEG-1000 (Mn 1,000) were used as a soft segment. The structures of all synthesized thermotropic liquid crystalline polyurethanes (TLCPUs) were characterized by FTIR spectroscopy. The effects of mesogenic units on the LC properties and elastic behaviors of LCPUs were studied. It was difficult to show LC behaviors for the PU elastomers derived from the mesogenic units with a lower aspect ratio, such as 3,3′-(4,4′-biphenylene)dipropanol, or the long soft segments, PTMEG-2000. In addition, these PU elastomers show better elastic properties by using a higher aspect ratio mesogenic unit as the chain extender, such as benzene-1,4-di(4-iminophenoxy-n-hexanol and benzene-1,4-di(4-imino-phenol)). The thermal properties were investigated by DSC measurements, thermal optical polarized microscopy, wide angle X-ray diffraction, dynamic mechanical analysis, and thermogravimetric analysis. The mechanical properties were measured by a tensilemeter. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
On the basis of the concept of mesogen‐jacketed liquid crystalline polymers, a series of new methacrylate monomers, (2,5‐bis[2‐(4′‐alkoxyphenyl) ethynyl] benzyl methacrylate (MACn, n = 4, 6, 8, 10, and 12) and 2,5‐bis[2‐(6′‐decanoxynaphthyl) ethynyl] benzyl methacrylate (MANC10), and their polymers, PMACn (n = 4, 6, 8, 10, and 12) and PMANC10 were synthesized. The bistolane mesogen with large π‐electron conjugation were side‐attached to the polymer backbone via short linkages. Various characterization techniques such as differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized light microscopy were used to study their mesomorphic phase behavior. The polymer PMACn with shorter flexible substituents (n = 4) forms the columnar nematic (?N) phase, but other polymers with longer flexible tails (n = 6, 8, 10, and 12) can develop into a smetic A (SA) phase instead of a ?N phase. The PMANC10 containing naphthyl can also form a well‐defined SA phase. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
液晶聚合物的单层与Langmuir-Blodgett膜   总被引:1,自引:0,他引:1  
系统研究了手性液晶聚硅氧烷和光致变色液晶聚硅氧烷两个毓的侧链液晶聚合物在空气/水界面的单层行为和Langmuir-Blodgett(LB)膜沉积特性,对LB膜结构与存在的聚集现象进行了系统的表征,并初步探讨了LB膜中液晶聚合物表现的功能性。  相似文献   

11.
We report on the results of X-ray investigations in two series of polymer monomer composites, PM6Rm-33 and PMnR12-33, which consist of mixtures of achiral liquid crystalline side chain polymers and their monomers. These mixtures present a unique integration of monomer in the polymeric base which assists in modifying their properties and forming homogenous composites. X-ray measurements for all the investigated composites indicate the existence of bilayered smectic C phases (SmC2). In several composites, the interlayer distance of the SmC2 phase abnormally increases with cooling; this is associated with the aliphatic interdigitation at the tail-to-tail interface being more prominent when longer aliphatic tails are present.  相似文献   

12.
A series of side‐chain liquid‐crystal polymers, poly[6‐[4‐(4′‐n‐alkyl benzoateazo)phenoxy]‐hexylmethacrylate]s (PMAzoCOORm, m = 1, 2, 3, 4, 5, 6, 8, 10, 14, and 18) have been prepared by two synthetic methods. The chemical structure of the monomers was confirmed by 1H NMR and mass spectrometry. The molecular characterizations of the polymers were performed with 1H NMR and gel permeation chromatograph. The phase behaviors of polymers were investigated by the combination of techniques including differential scanning calorimetry, polarized optical microscopy, and small‐angle X‐ray scattering. For m = 1, 2, 3, 4, 5, and 6, the polymers exhibited a monosmectic A phase in which the smectic layer period was almost identical to the side‐chain length. In addition, for m = 2, 3, 4, and 5, they presented the monosmectic C phase in low temperature; moreover, the tilt angle increased from 23.3 to 40.5°. For m = 8, 10, 14, and 18, the polymers showed a bilayer smectic A phase in which the layer spacing was larger than a fully extended side chain but less than two extended chains. On the other hand, for the clearing point, with the increasing of m, it first decreased, and then increased. All of these indicated that the length of alkyl tails played an important role in the phase behaviors of these polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2759–2768  相似文献   

13.
A novel combined main‐chain/side‐chain liquid crystalline polymer based on mesogen‐jacketed liquid crystal polymers (MJLCPs) containing two biphenyls per mesogenic core of MJLCPs main chain, poly(2,5‐bis{[6‐(4‐butoxy‐4′‐oxy‐biphenyl)hexyl]oxycarbonyl}styrene) (P1–P8) was successfully synthesized via atom transfer radical polymerization (ATRP). The chemical structure of the monomer was confirmed by elemental analysis, 1H NMR, and 13C NMR. The molecular characterizations of the polymer with different molecular weights (P1–P8) were performed with 1H NMR, gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). Their phase transitions and liquid‐crystalline behaviors of the polymers were investigated by differential scanning calorimetry (DSC) and polarized optical microscope (POM). We found that the polymers P1–P8 exhibited similar behavior with three different liquid crystalline phases upon heating to or cooling in addition to isotropic state, which should be related to the complex liquid crystal property of the side‐chain and the main‐chain. Moreover, the transition temperatures of liquid crystalline phases of P1–P8 are found to be dependent on the molecular weight. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7310–7320, 2008  相似文献   

14.
This paper is concerned with an analysis of the thermodynamics and kinetics of mesophase formation by cooling from the isotropic state of side-chain liquid crystalline polycarbosilanes containing spacers in the range from 3 to 11 CH2-groups. The polymers are characterized by their thermotropic behaviour as far as temperature, enthalpy and entropy of the transitions are concerned. The kinetics was followed by optical and calorimetric methods. Longer spacer length leads to more perfect ordering in the mesophase, higher isotropization temperatures, and lower glass transition temperatures. The Avrami and Ozawa formalism to describe the transition kinetics to the mesophase from the isotropic state cannot be interpreted as the nucleation and growth mechanism known from crystallization.Dedicated to Professor Bernhard Wunderlich on the occasion of his 65th birthday  相似文献   

15.
Mesogen‐jacketed liquid crystalline polymers (MJLCPs) with both electron‐transport oxadiazole and hole‐transport thiophene in the side chain were reported for their promising electroluminescent property. Monomers of 2,5‐bis{5‐[(4‐alkoxyphenyl)‐1,3,4‐oxadiazole]thiophen‐2‐yl}styrene (M‐Cm, m is the number of the carbons in the alkoxy groups, m = 8,10) were synthesized and confirmed by 1H‐NMR, mass spectrometry, and elemental analysis. The corresponding polymers were successfully obtained and characterized by thermal analysis, optical spectroscopy, cyclic voltammetry, electroluminescent analysis, polarized light microscopy (PLM), and wide‐angle X‐ray diffraction (WAXD). The polymers exhibited high decomposition temperatures reaching 382 °C and high Tg's reaching 184 °C. The absorption spectra indicated that both the monomers and polymers had little aggregation in film than that in solution, and the absorption spectra of the polymers showed an obvious blue‐shift compared with those of the monomers. Both the monomers and the polymers had blue‐green emission, and the photoluminescence spectra of the polymers in film suggested the formation of excimer or exciplex. The polymers showed lower HOMO energy levels and LUMO energy levels than those of the MJLCPs containing oxadiazole unit reported before. Electroluminescence study with the device configuration of ITO/PEDOT/PVK/polymer/TPBI/Ca/Ag showed maximum brightness and current efficiency of 541 cd/m2 and 0.10 cd/A, which proved that the introduction of directly connected electron‐ and hole‐transport units could greatly improve the EL property of side‐chain conjugated polymers. The phase structures of the polymers were confirmed to be smectic A phase through the results of PLM and WAXD. The annealed samples emitted polarized photoluminescence at room temperature, which indicated potential utility for practical applications in display. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1502–1515, 2010  相似文献   

16.
The orientation relaxation behavior of a stretched side-chain liquid crystalline polymer (SCLCP) on a poly(vinyl alcohol) (PVA) film under strain was investigated through infrared dichroism at temperatures near its phase transitions. We found a reorientation of the aligned mesogens over the smectic to nematic transition of the SCLCP, changing the alignment from an initially, mechanically induced perpendicular orientation to a parallel orientation with respect to the film-stretching direction. This reorientation was found to be irreversible during subsequent nematic to smectic transition, with the parallel orientation preserved. We show that it is possible to stop the reorientation process by cooling the SCLCP back to its smectic phase just before the change in the alignment direction. Moreover, this interruption can result in a stable, zero macroscopic orientation of the mesogens in the stretched SCLCP, and a subsequent heating to the smectic-nematic transition allows the reorientation process to restart and to be completed. We discuss the possible mechanisms for this mesophase transition-induced reorientation and the factors that could influence the process. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1491–1499, 1997  相似文献   

17.
Investigations of dielectric relaxation and thermal properties of mixtures composed of liquid crystalline side‐chain polysiloxane and low molecular mass azo‐dye have been carried out. The dyes have been chosen to solublize well in the polymer matrix at concentrations up to 0.08 mol fraction. The dielectric relaxation experiments have shown the presence of separate processes attributed to reorientational motions of mesogenic side groups and dye molecules. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 369–377, 1999  相似文献   

18.
Two novel square-planar palladium chelating liquid crystals, bis(p-n-(l-undecenoxyphenyl-3-dodecyloxyphenyl)-propane-1,3-dionato)palladium(II) (Pd-C11-C12) and bis(1,3-di(p-n-tetradecyloxphenyl)-propane-1,3-dionato) palladium (II) (Pd-C14-C14) have been synthesized. Moreover, the copper chelating liquid crystal bis(p-n-(l-undecynoxylphenyl-3-dodecyloxylphenyl)-propane-1,3-dionate)copper (II) (Cu-Cu11-C12) has been synthesized by heterogeneous ligand-exchange reaction. These β-diketone metal chelates have been characterized by elementary analysis, differential scanning calorimetry, polarizing microscopy, X-ray diffraction analysis and temperature-variable IR. It was found that these chelates were discotic lamellar-(DL) mesophase liquid crystals. In particular, the temperature-variable IR study indicates that the central chelating ring and the surrounding benzene rings would form a co-planar conjugated structure in the liquid crystalline (LC) state.  相似文献   

19.
综述了国内外有机硅侧链液晶近年来的研究进展,对近晶型、席夫碱型、向列型、胆甾型、偶氮苯型、鱼骨型以及光学非线性型几种主要类型的有机硅侧链液晶进行了详细介绍,并对近年来受到重视的有机硅侧链液晶电流性和离聚物研究进展作了较全面的总结,最后对其应用前景进行了展望。  相似文献   

20.
Amphiphilic lyotropic liquid crystalline surfactants are synthesized displaying 10-undecenoic acid as hydrophobic and ethyleneglycol units as hydrophilic parts of the molecules. By addition reaction of the monomeric surfactants with poly [oxy(methylsilylene)], the surfactants are attached as side chains to the siloxane main chain. The phase behaviour of a polymer-water system and the corresponding monomer-water system is investigated by polarizing microscopy. The monomeric surfactant exhibits a liquid crystallineM 1-phase of hexagonally packed, rod-like micelles in a concentration range of 49 to 70% surfactant. The liquid crystalline state of the polymeric surfactant is more stable, which is indicated by a broader temperature- and concentration range (35%–90% polymer surfactant). At lower concentration aM 1-phase exists, which is separated by a cubic phase from a lamellarG-phase at higher concentration of the polymer surfactant. Compared to the monomeric system, the increased stability of the polymeric mesophase can be understood by the restriction of motions of the amphiphiles due to the linkage to the polymer main chain.Dedicated to Prof. Dr. F. H. Müller.The authors are greatly indebted to Wacker Chemie, D-Burghausen, FRG for kindly delivering the poly(hydrogensiloxane).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号