首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonbridged bis-substituted indenyl zirconene complexes were used as the catalysts for ethylene/1-hexene copolymerization and propylene polymerization. The complicated “comonomer effect” on the activity of ethylene/1-hexene copolymerization was observed. The effect also worked on the incorporation of comonomer. The number and the position of the substituents were important for the copolymerization behavior and the microstructure of the resultant copolymer as well as for propylene polymerization.  相似文献   

2.
Ethylenebis (η5-fluorenyl) zirconium dichloride ( 1 ) and rac-dimethylsilylene bis (1-η5-in-denyl) zirconium dichloride ( 2 ) were activated with methylaluminoxane (MAO) to catalyze ethylene (E) propylene (P) copolymerizations. The former produces high MW copolymer at 20°C rich in ethylene with reactivity ratio values of rE = 1.7 and rP <0.01, whereas the latter produces lower MW random copolymers with rE = 1.32 and rp = 0.36. Ethylidene norbornene (ENB) complexes with 1/MAO but does not undergo insertion in the presence of E and P. In contrast, 2/MAO catalyzes terpolymerization incorporating 9-15 mol % of ENB with slightly lower MW and activity than the corresponding copolymerizations. In comparison, 1,4–hexadiene was incorporated by 2/MAO with much lower A and MW . Terpolymerizations were also conducted with vinylcyclohexene using both catalyst systems. The steric and electronic effects in these processes were discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
In this article we report a study of in situ polymerization of ethylene by intercalated montmorillonite (MMT) with metallocene, allowing an investigation of the nanoscopic confinement effect of olefin polymerization and of the structure of polymer prepared in situ. Ethylene polymerization by intercalated MMT with metallocene and the varied aggregation morphology of the resulting polymer during polymerization were studied by X‐ray diffraction (XRD), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC). The polymerization kinetics and the resulting polymer before and after destruction of the silicate registry were different. The laminated structure of silicate lowered the all‐reaction rate, including the propagation, chain transfer, and termination reactions, producing polymer of a high molecular weight. Moreover, the melting point of the polymer gradually increased during the in situ polymerization, indicating that nanoscopic confinement between solid surfaces affects the crystallization behavior of polyethylene via in situ polymerization. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 38–43, 2004  相似文献   

4.
Polymerization of propylene by Cp*TiMe2(μ-Me)B(C6F5)3 in the presence of increasing partial pressures of H2 results in ever decreasing polymer molecular weights, which is consistent with the hydrogenolytic chain transfer processes involving metal–polymer bonds in many heterogeneous and homogeneous systems. However, catalytic activities are not significantly increased as the extent of hydrogenolysis increases, unlike metallocene catalyst systems in which the H2 reacts primarily with dormant catalytic sites containing propylene 2,1-insertion products. It was shown previously that monocyclopentadienyl systems do not become seriously deactivated following 2,1 insertions, and thus hydrogenolysis does not result in enhanced activities. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4386–4389, 1999  相似文献   

5.
Gas-phase polymerizations have been executed at different temperatures, pressures, and hydrogen concentrations using Me2Si[Ind]2ZrCl2 / methylaluminoxane / SiO2(Pennsylvania Quarts) as a catalyst. The reaction rate curves have been described by a kinetic model, which takes into account the initially increasing polymerization rate. The monomer concentration in the polymer has been calculated with the Flory–Huggins equation. The kinetic parameters have been determined by fitting the reaction rate curves with the model. At high temperatures, pressures, and hydrogen concentrations a runaway on particle scale may occur leading to reduced polymer yields. The molecular weight and molecular weight distribution of the polymer samples could be described by a “two-site model.” At constant temperature the chain-transfer probability of sites 1 and 2 depends only on the hydrogen concentration divided by the monomer concentration. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 500–513, 2001  相似文献   

6.
Propylene was polymerized at varying trimethylaluminium (TMA) concentration with a homogeneous binary metallocene catalyst system activated by methylaluminoxane (MAO) in an attempt to better understand interactions between active catalyst sites and to clarify the role of the TMA as a chain shuttling agent. TMA‐free polymerization conditions were obtained by chemical treatment of MAO solution with 2,6‐di‐tert‐butyl‐4‐methylphenol (BHT). A binary catalyst system consisting of catalyst precursors diphenylmethyl(cyclopentadienyl)(9‐fluorenyl)zirconium dichloride ( 1 ) producing high Mw syndiotactic polypropylene and rac‐dimethylsilylbis(4‐tert‐butyl‐2‐methyl‐cyclopentadienyl)zirconium dichloride ( 2 ) producing low Mw isotactic polypropylene was investigated. At the studied polymerization conditions, chain shuttling between the active catalysts caused by TMA was confirmed. The chain shuttling reactions caused changes in catalyst activity, molecular weights, melting behavior, and polymer microstructure. We propose that TMA is capable to transfer a growing polymer chain from catalyst 2 to catalyst 1 , and a stereoblock copolymer is formed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1364–1376, 2007  相似文献   

7.
Nano-sized latex particles as organic supports for metallocenes applied in olefin polymerizations are introduced. The particles are functionalized with nucleophilic surfaces such as polyethylenoxide (PEO), polypropyleneoxide (PPO) or pyridine units allowing an immobilization of the metallocene catalysts via a non-covalent immobilization process. The latices are obtained by emulsion or miniemulsion polymerization with styrene, divinylbenzene as the crosslinker, and either PEO or PPO functionalized styrene or 4-vinylpyridine for surface functionalization. The supported catalysts, e.g. [Me2Si(2MeBenzInd)2ZrCl2/MAO] on PPO containing latices or Cp2ZrMe2/([Ph3C][B(C6F5)4]) on pyridine functionalized materials were tested in ethylene polymerizations. Remarkably, high activities and excellent product morphologies were obtained. The influence of the degree of surface functionalization on activity and productivity was investigated. Furthermore, the fragmentation of the catalyst was studied by electron microscopy using bismuth-labeled latex particles or by fluorescence and confocal fluorescence microscopy using dye-labeled supports. Finally, a self-immobilizing catalyst/monomer system is presented. It is demonstrated that by using PEO-functionalized olefins, the metallocenes were immobilized on the monomers. Subjecting these mixtures to an ethylene copolymerization, again high activities and productivities as well as polyolefin beads with high bulk densities are observed, indicating that an extra supporting process for controlling the product size and shape of the polyolefins is not necessary for these monomers.  相似文献   

8.
In this work, propylene was polymerized with isospecific and syndiospecific catalysts in homogeneous and heterogeneous systems. The binary metallocene system of both isospecific and syndiospecific catalysts in the heterogeneous system was also used. Besides the type of catalyst, parameters such as polymerization temperature and pressure were varied to achieve the better conditions for the polymerization. The objective of this work is to investigate the influence of these parameters on the characteristics of the produced polymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2979–2986, 2002  相似文献   

9.
Polymeric (Cp2Yb·THF) n (1), ionicate-complex Cp3YbNa (2), and mono-adduct (But 2C5H3)2Yb·THF (3) were prepared through a reaction of CpNa (Cp = C5H5 or C5H3But 2) with Ybl2 in THF. Cooling complex (3) in THF at –100 °C gives a bis-adduct, which reversibly dissociates to give the mono-adduct, The (But 2C H , Yb·THF complex shows catalytic activity in the homogeneous hydrogenation of hex-l-ene and in the polymerization of styrene.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No, 7, pp. 1833–1837, July, 1996.  相似文献   

10.
In the presence of Si? H containing cocatalysts, dicobaltoctacarbonyl has been found to very efficiently catalyze the ring-opening polymerization of cyclic ethers, especially epoxides, as well as certain vinyl monomers. The reaction conditions employed are very similar to those used in Co2(CO)8 catalyzed hydrogenation and hydrosilylation reactions. Detailed investigations have been carried out to elucidate the nature of the active species for this catalytic system. A cationic mechanism is proposed based on the experimental results of those investigations.  相似文献   

11.
Propylene has been polymerized with mono(η5-cyclopentadienyl)titanium tribenzyloxide activated with methylaluminoxane (MAO). It was found that the content of residual trimethylaluminium (TMA) in MAO has a determinative effect on the polymerization. An excess of TMA in the catalyst system reduces the Ti species to inactive lower valent states. The catalyst system gives medium molecular-weight atactic polypropylene (Mv = 2–7 × 104) with narrow molecular weight distribution (Mw/Mn = 1.4–1.8). The polymer has a stereoirregular structure described by Bernoullian statistics. Statistical analysis of the regiotriad distribution of the polypropylene chains indicates a regioblock microstructure. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2051–2057, 1998  相似文献   

12.
A new solvent mixture, based on ethanol/reline (EM: eutectic mixture), was investigated for the supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP) of methyl acrylate (MA) near room temperature, for the first time, affording complete catalyst recovery and reuse. The kinetic results revealed that the polymerizations were controlled, with polymers having narrow molecular weight distributions (? < 1.2). The “living” character of the resultant PMA was confirmed by the synthesis of a well‐defined PMA‐b‐PBA block copolymer. Remarkably, it was demonstrated that the Cu(0)/CuBr2/Me6TREN (Me6TREN: tris[2‐(dimethylamino)ethyl]amine) could be recovered from the final reaction mixture and reused for new successful SARA ATRP of MA, suggesting that the reported system could be very attractive from both the economic and environmental perspectives. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 371–381  相似文献   

13.
Ethylalumoxanes and ethylchloroalumoxanes as components of Ziegler-Natta catalysts for polymerization of propylene have been studied. The influence of the degree of hydrolysis of triethyl aluminium [(Et3Al) and diethylaluminium chlorilp (Et2AlCl)2] in the range 0.5–1.5:1 on the activity and the stereospecificity of the catalytic systems was determined (the degree of hydrolysis is defined as the molar ratio H2O/organoaluminium compound). It was found that the activity of the catalytic system ethylalumoxane- TiCl4 is a little higher than the activity of the Et2AlCl-TiCl4 system. The ethylchloroalumoxane-TiCl4 system is about six times more active than the classical Ziegler-Natta system. Our studies showed that alumoxanes react with TiCl4 as follows: (a) to form compounds of the Al? O? TiCl3 type; (b) to exchange alkyl groups for chlorine; (c) to form donor-acceptor complexes. Reactions of types (b) and (c) occur mainly in the cases of alumoxanes of low degree of hydrolysis (0.5–0.7). In cases of alumoxanes of a degree of hydrolysis equal to 0.7–1.0, reactions of all three types occur, and for alumoxanes of degree of hydrolysis >1.0 reactions of types (a) and (c) are preferred.  相似文献   

14.
Alkyl exchange reaction between dialkylzinc compounds and vacuum‐dried methylaluminoxane (MAO) was investigated. 1H NMR shows a clear and direct proof of alkyl exchange reaction between ZnEt2 and trimethylaluminum associated with MAO. Detailed analysis of polymers produced in the presence of dialkylzinc compounds gave other indirect but equally strong evidence of alkyl exchange. Therefore, care must be taken to investigate dialkylzinc‐based chain transfer reaction in combination with a precatalyst and MAO. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Vinylsilanes CH2CHSiR3 (R = Me, NMe2, OMe, OTMS) copolymerize with ethylene rapidly in the presence of catalytic amounts of [Cp′2ZrMe][MeB(C6F5)3] (Cp′ = η5‐C5Me5) ( I ) to give high molecular weight silyl‐functionalized polyethylene. The molecular weight of the polymer can be controlled by varying the comonomer concentration as well as the reaction temperature. Relatively low molecular weight polymer was produced at a higher silyl monomer concentration and a higher polymerization temperature. The incorporation of silyl monomer in the polymer is in the range of 0.1‐ 6.0%. On the other hands, catalysts [Cp2ZrMe][MeB(C6F5)3] (Cp′ = η5‐C5H5) ( II ) and [Cp″2ZrMe][MeB(C6F5)3] (Cp″ = η5‐1,2‐C5Me2H3) ( III ) show much lower activity. With the use of more coordinatively unsaturated constrained geometry catalysts (CGC), Me2Si(η5‐C5Me4)(NtBu)MMe][MeB(C6F5)3] ( IV , M = Zr; V , M = Ti), the silyl monomer incorporation in the polymer was increased to 40%. The Ti catalyst is more active and produces polymer with a higher molecular weight with a higher silyl monomer incorporation at 23 °C. The copolymerization of vinyltrimethylsilane with propylene was also investigated with these catalysts, yielding high silyl‐functionalized propylene copolymer/oligmer. The microstructure of the copolymers/oligomers has been thoroughly investigated by 1D and 2D NMR techniques (1H, 13C, NOE, DEPT, HETCOR, and FLOCK). The results show that the backbone of the copolymers/oligomers is essentially random. Several termination pathways have been identified. In particular, two unsaturated silyl terminations, cis and/or trans‐TMS CHCH , were identified with the constrained geometry catalysts. Their formation was rationalized based on transition state models. It was found that occasional 1,2‐insertion of either propylene or vinyltrimethylsilane into the chain propagation process has a high probability serving as the trigger for polymer chain termination via β‐H elimination. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1308–1321  相似文献   

17.
The radical polymerization of glycidyl methacrylate (GMA) was conducted under a carbon dioxide atmosphere (1 atm) in the presence of catalysts for the reaction of carbon dioxide and the oxirane group to afford the five‐membered cyclic carbonate group. The degrees of the carbon dioxide fixation depended on catalysts, concentration, and solvents. In solution reaction, the slower polymerizations resulted in faster carbon dioxide fixation, due to the faster carbon dioxide fixation to GMA than to oxirane moieties in polymers. When the polymerization was conducted in 1,4‐dioxane, which is a good solvent for polyGMA but a poor solvent for the analogous polymer bearing cyclic carbonate moieties, the resulting polymers were precipitated out as the progress of the polymerization and the carbon dioxide fixation. As a result, polymers could be isolated by simple filtration and rinsing with methanol. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3170–3176, 2009  相似文献   

18.
We report the cyclo-depolymerization of poly(propylene terephthalate) to give a mixture of cyclic oligomers in 94% yield, the characterization of the mixture by 1H-NMR spectroscopy, matrix assisted laser desorption ionization time of flight mass spectrometry and gel permeation chromatography. The major cyclic oligomer in the mixture was shown to be the cyclic dimer. It was isolated and its X-ray crystal structure determined. Some entropically-driven ring-opening polymerizations of the cyclic oligomers were carried out. So too were some copolymerizations using mixtures of the cyclic oligomers and those derived similarly from poly(ethylene terephthalate) and poly(butylene terephthalate). 13C-NMR spectroscopic analysis showed that the copolymers were random. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Racemic isopropylidene (1-η5-cyclopentadienyl)(1-η5-indenyl) dichlorozirconium and the 3-methylindenyl derivative have been synthesized and characterized. These precursors activated with methylaluminoxane produce poly(propylene) with hemiisotactic microstructures. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号