首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-component simultaneous interpenetrating networks (IPN) of thepoly(4′-[[2-(methylacryloxy)ethyl]ethylamino]-4-nitroazobenzene-co-methyl meth-acrylate) (PDR1MA-co-MMA)/poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) system, the PDR1MA/PPO system and 4′-[[2-(acetoxy)ethyl]ethylamino]-4-nitroazo benzene (ACDR1) doped MMA/PPO system were synthesized and characterized. As studied by differential scanning calorimetry (DSC) the full IPNs of the PDR1MA-co-MMA/PPO system and the PDR1MA/PPO system showed a single Tg varying with the PPO composition. A single-phase morphology of the full IPNs was also indicated by scanning electron microscopy (SEM). Transparent films were cast onto clean microscopic glass slides and poled at 190°C for 1 h. The UV-VIS absorption spectra of the three IPN systems before and after curing and corona poling showed a shift in the maximum absorption due to the induced alignment of the nonlinear optical chromophores in the IPN systems. The absorption intensity of the full IPNs remained same after heating at 120°C for 72 h, indicating that the electric field-induced alignment is stable in the full IPN materials. Preliminary second harmonic generation (SHG) data on these IPNs are presented. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 553–561, 1998  相似文献   

2.
We demonstrate a potentially useful method of generating an SiO2 morphology, in situ, with interpenetrating polymer networks (IPN) chemistry. Organic/inorganic IPNs were synthesized with an organic phase made of epoxy resin and an SiO2 phase made by sol—gel chemistry. The two types of polymerization used were sequential and simultaneous with SiO2 content ranging from 0.02 to 0.43 g SiO2/g total weight. The resultant morphologies were examined by small angle X-ray scattering and transmission electron microscopy. The sequential IPNs were strongly phase separated into a finely divided SiO2 phase of ∼10 nm size scale. The simultaneous IPNs were weakly phase separated with considerable mixing in the phases. Thermal studies showed increased thermal stability for the IPNs, compared with unfilled epoxies or physically mixed silica filled epoxies.  相似文献   

3.
Interpenetrating polymer networks (IPNs) based on polyurethane and polyacrylate-containing 4-(4'-nitrophenylazo) aniline chromophore groups were synthesized and characterized by infrared spectra, gel content and differential scanning calorimetry. Thin, transparent films of the IPNs were prepared by spin-coating, followed by thermal curing and corona poling. The poled IPN film shows very good optical properties and exhibits only one glass transition temperature. The second-order nonlinear optical (NLO) properties of the poled film were studied by visible light absorbance measurement according to one-dimensional rigid oriented gas model. The second-order nonlinear optical polarizability can reach 10-7 e.s.u. The poled IPN film of defined composition showed a good temporal stability of NLO properties at 120°C for more than 160 hr.  相似文献   

4.
A series of all organic nonlinear optical (NLO) sol-gel materials based on melamines and an azobenzene dye (Disperse Orange 3; DO3) have been investigated. Different contents of DO3 were covalently bonded with the melamine-based organic network via condensation of amino and methylol groups. The optically clear samples exhibited second-order optical nonlinearity (second-harmonic coefficient d33) = 35.4 and 11.5 pm/V at 1064 and 1542 nm, respectively) after poling and curing at 220°C for 1 h. Thermal behavior of these organic NLO sol-gel systems was studied by temperature-dependent dielectric relaxation. The results indicate that the incorporation of rigid NLO-active chromophore into the melamine-based matrix leads to high rigidity and dense packing of the organic network. Subsequently, higher glass transition temperatures were obtained for the organic NLO sol-gel material with higher DO3 content. The influence of composition on the temporal stability at 100°C was also investigated. Temporal stability at 100°C was studied as a function of system composition. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2503–2510, 1999  相似文献   

5.
We report the synthesis and characterization of interpenetrating polymer networks (IPNs) exhibiting nonlinear optical (NLO) properties. The network consists of aliphatic polycarbonate urethane (PCU) and poly(methyl methacrylate-co-N,N-disubstituted urea), with a nonlinear optical (NLO) chromophore incorporated into N,N-disubstituted urea. The full IPNs have only one Tg, as determined by differential scanning calorimetry (DSC), together with scanning electron microscopy (SEM) observations, suggest a single phase morphology. The thin films of IPNs are transparent and the unpoled samples produced second harmonic generation (SHG) signals at room temperature. This result indicates that the NLO chromophore is oriented noncentrosymmetrically during the IPN formation process and is tightly held between the permanent entanglements of the two component networks of the IPN. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
A series of latex particles with interpenetrating polymer network structure have been synthesized from waterborne polyurethane (PU) and polystyrene (PS). The effect of PU/PS composition, cross-linking density in the PS domain as well as in PU have been studied in terms of dispersion size, transmission electron microscopy morphology, mechanical and dynamic mechanical properties in addition to swellability in water and toluene of the dispersion cast film. It was found that inverted core (PS)–shell (PU) morphology was well defined and that the domain size as well as the film properties were well controlled by the latex composition and cross-linking density of both phases. Received: 15 March 2000 Accepted: 21 February 2001  相似文献   

7.
The effects of compatibilizing additives (monomethacrylic ester of ethylene glycol (MEG) and oligo-urethane-dimethacrylate (OUDM)) on the kinetics of interpenetrating polymer network (IPN) formation based on cross-linked polyurethane and linear polystyrene and its influence on the microphase separation, viscoelastic and thermophysical properties have been investigated. It was established, that various amounts (3-10 mass%) of the additive MEG and 20 mass% OUDM introduced into the initial reaction system prevent microphase separation in the IPN. In the course of the reaction the system undergoes no phase separation up to the end of reaction, as follows from the light scattering data. The viscoelastic properties of modified IPN are changed in such a way that instead of two relaxation maxima characteristic of phase-separated system, only one relaxation maximum is observed, what is result of the formation of compatible IPN system. The position of this relaxation transition depends on the system composition and on the reaction conditions.  相似文献   

8.
We have studied the densities, kinetics, and equilibrium degree of swelling in a number of different solvents of poly(carbonate urethane)/poly(methyl methacrylate) and poly(carbonate urethane)/poly(vinyl pyridine) interpenetrating polymer networks (IPN's). The kinetics of solvent uptake are often anomalous. The equilibrium extent of swelling reflects, among other factors, the number of phases present. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
A possible model for the formation of interpenetrating polymer networks is suggested. Phase separation is assumed to be faster than gelation. This implies that domains rich in either component grow first until late stages of spinodal decomposition. In these domains, short linear chains are crosslinked, leading to large branched macromolecules. Growth of the domains is slowed down by the presence of crosslinked polymers. It is assumed that it is stopped when the sizes of the domains and of the branched macromolecules are comparable. The resulting domains are significantly larger than the average distance between crosslinks. These results are supported by recent neutron scattering results on a poly(carbonate-urethane)/polyvinyl pyridine interpenetrating network. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1507–1512, 1998  相似文献   

10.
Simultaneous interpenetrating polymer networks (SINs) based on epoxy/poly(n-butyl acrylate) systems were synthesized at 120°C. The polymerization kinetics were studied both in situ by Fourier Transform Infrared Spectroscopy (FT–IR). Three key events occurred during the polymerization, namely the gelation of the network I, gelation of the network II, and phase separation of one polymer from the other. Thus, metastable phase diagrams describing the relations between the three events were constructed. Three-dimensional tetrahedrons characterizing the four-component system (the two monomers and the two polymers) allow the visualization of these three key events and also define some critical points, for example, the loci of the points where simultaneous gelation of the two networks occurs. The inside of the tetrahedron was also investigated using partially reacted model compounds. These tetrahedrons can be used as guidelines for setting up a synthesis strategy leading to desired morphologies. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1973–1984, 1997  相似文献   

11.
High transparent and homogeneous poly(vinylidene fluoride) (PVdF)/silica hybrids were obtained by using an in‐situ interpenetrating polymer network (IPN) method. The simultaneous formation of PVdF gel resulting from the physical cross‐linking and silica gel from sol–gel process prevented the aggregation of PVdF in silica gel matrix. To form the physical cross‐linking between PVdF chains, the cosolvent system of dimethylformaide (DMF) and γ‐butyrolactone was used. The obtained PVdF/silica hybrids had an entangled combination of physical PVdF gel and silica gel, which was called a “complete‐ IPN” structure. The physical cross‐linking between PVdF chains in silica gel matrix was confirmed by differential scanning calorimetry (DSC) measurements. The miscibility between PVdF and silica phase was examined by scanning electron microscopy (SEM) and tapping mode atomic force microscopy (TM‐AFM) measurements. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3543–3550, 2005  相似文献   

12.
Polyether-based polyurethane/poly (methyl methacrylate-co-ethyleneglycol dimethacrylate) interpenetrating polymer networks [PU/P (MMA–co–EGDMA)-IPNs] were synthesized and used as adhesives to adhere vulcanized natural rubber (NR) and soft polyvinyl chloride (PVC). The structure and morphology of the IPN adhesives in bulk and near the adhesive/substrate interfaces were investigated. A new mechanism of adhesion called conjugate interpenetration of networks across interfaces, which is suitable for IPN adhesives and polymer substrates, was put forward. According to this mechanism, while forming simultaneous interpenetrating networks in the adhesive, the monomers in the IPN adhesive can permeate polymer substrates and polymerize in situ to form gradient IPNs, thereby producing conjugate three-component IPNs near the adhesive/substrate interfaces. It is the conjugate interpenetration of the networks across the interfaces that strengthens interfacial combination remarkably and results in high bond strength of IPN adhesives. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
Latex interpenetrating and semi-interpenetrating polymer networks (LIPNs and semi-LIPNs) combine the morphological characteristics of bulk-polymerized IPNs with the characteristics of polymers produced by emulsion polymerization; there are IPN structures within the latex particles. These LIPNs can be injection-molded using standard thermoplastic methods and machinery. A dual thermoset—thermoplastic nature characterizing the LIPN manifests itself in the mechanical and rheological behavior reflecting unique morphologies. These morphologies result from a sequential two-stage latex (TSL) polymerization and include core—shell, domain, interpenetrating polymer networks and various other combinations. Elastomeric TSL with crosslinked polyacrylates (xPA) as the first stage and crosslinked polystyrene (xPS) as the second, each stage lightly crosslinked, yield IPN-nano-domain structural particles. Upon molding, the particles become interconnected by joint PS nanodomains, introducing a particle—particle strength-forming mechanism. The intraparticle glassy PS nanodomains reinforce the soft elastomeric particles enhancing their modulus. Glassy “all-styrene” semi-LIPNs made of PS and xPS show improved mechanical performance compared to PS, while exhibiting good transparency. Volumetric crazing in these PS/xPS materials develops in tension-improving elongation and strength. The presence of xPS particles, denser and thus stiffer than the PS matrix, renders a higher modulus. Essentially xPS highly filled blends are achieved along with significant particle—matrix interactions. The ability to generate a controlled plethora of morphologies offers a wealth of potential applications, from reinforced elastomers to high impact plastics. Poly(acrylonitrile—butadiene—styrene), a semi-LIPN, is a commodity plastic, clearly demonstrating the utilization potential of the TSL procedure for generating very fine multiphase materials of scientific and technological merits.  相似文献   

14.
The thermal decomposition kinetics of polyurethane/polyethyl acrylate interpenetrating polymer networks (PU/PEA IPN) were studied by means of thermogravimetry and derivative thermogravimetry (TG-DTG), and compared with those of polyurethane (PU) and polyethyl acrylate (PEA). The decomposition temperature (T i) of PU/PEA IPN was found to be higher thanT i of PEA, but lower thanT i of PU. Thermal decomposition kinetic parameters,n andE, estimated using Coats-Redfern method, are found for PU/PEA IPN, PU and PEA to be 1.6, 1.9 and 1.1, and 196.6, 258.6 and 139.2 kJ mol–1, respectively. The results show that PU/PEA IPN is neither a simple mixture of PU and PEA nor a copolymer of them. The mechanism of thermal decomposition of PU/PEA IPN is different from those of PU and PEA. The special network in PU/PEA IPN effectually protects weak bonds in the molecular chain of PU and PEA.We express our thanks to Dr. Yaxiong Xie and Zhiyuong Ren for their help in this work,  相似文献   

15.
Organic–inorganic hybrid semi‐interpenetrating polymer network (semi‐IPN) gels containing polyfluorenes (PFs) are synthesized by hydrosilylation reaction of joint and rod molecules in toluene, where PFs are poly(9,9‐dihexylfluorene‐2,7‐diyl) (PF6) or, poly(9,9‐dioctylfluorene‐2,7‐diyl) (PF8), joint molecules are 1,3,5,7‐tetramethylcyclotetrasiloxane (TMCTS), or 1,3,5,7,9,11,13,15‐octakis(dimethylsilyloxy)pentacyclo‐[9,5,1,1,1,1]octasilsesquioxane (POSS), and rod molecules are 1,5‐hexadiene (HD) or 1,9‐decadiene (DD). The semi‐IPN gels containing low molecular weight PF6 show higher photoluminescence efficiency (?g) than the toluene solution of PF6L (?s). The semi‐IPN gels composed of long rod molecule of DD and cubic joint molecule of POSS show the most effective increase in the emission intensity. The emission intensity of PF6L increases as formation of the network in the POSS‐DD semi‐IPN gel. The POSS‐DD semi‐IPN gels containing high molecular weight PF6 and PF8 also show the increase of emission intensity than those of the toluene solutions. The semi‐IPN synthesized in cyclohexane show syneresis and phase separation between network structure and PF chains. The semi‐IPN gels containing PF8 show emission peaks at 450 and 470 nm derived from β‐sheet structure of PF8. A systematic study clears correlation between emission property and network structure and/or composition of semi‐IPN gels. The semi‐IPN gels provide emissive self‐standing soft materials with high efficiency and in a narrow wavelength range emission. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 973–984  相似文献   

16.
Simultaneous interpenetrating polymer networks (SINs) based on diglycidyl ether of bis-phenol A (DGEBA) and poly(ethylene glycol) diacrylate (PEGDA) in weight ratios of 100/0, 50/50, and 0/100 were blended and cured simultaneously by using benzoyl peroxide (BPO) and m-xylenediamine (MXDA) as curing agents. A kinetic study during SIN formation was carried out at 45, 55, 63, and 70°C. Concentration changes for both the epoxide and C?C bond were monitored with FTIR. A rate expression for DGEBA cure kinetics was established with a model reaction of phenyl glycidyl ether (PGE) and benzylamine. Experimental results revealed that lower rate constants and higher activation energy for the SIN were found, compared with those for the constituent DGEBA and PEGDA network formation. A model of network interlock was proposed to account for this phenomenon. During simultaneous cure of DGEBA and PEGDA, the interlock (mutual entanglement) between DGEBA and PEGDA networks provided a sterically hindered environment, which subsequently increased the activation energy and reduced cure rates for both DGEBA and PEGDA. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
A new main-chain syndioregic (head-to-head) NLO polymer was synthesized. The glass transition temperature of high molecular weight polymer was found to be 208°C, and the polymer has minimal weight loss at temperatures to at least 250°C owing to the incorporation of hydrogen bonding moieties and rigid bridging groups. The polymer was further characterized using nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR). The study of the nonlinear optical properties of this polymer are in progress. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
Polyurethane (PU) based on polyepichlorohydrin/poly(methyl methacrylate) (PECH/PMMA) interpenetrating polymer networks (IPNs) was synthesized by a simultaneous method. The effects of composition, hydroxyl group number of PECH, NCO/OH ratio and crosslinking agent content in IPNs were investigated in detail. Some other glycols, such as poly(ethylene glycol), poly(propylene glycol) and hydroxyl-terminated polybutadiene, were also used to obtain PU/PMMA IPNs. The interpenetrating and fracture behaviors of the IPNs are explained briefly.  相似文献   

19.
Almost three decades ago, the field of nonlinear optics evolved with the discovery of lasers. In the beginning, nonlinear optical (NLO) phenomena were investigated in inorganic materials, leading to the development of traditional NLO materials such as lithium niobate, potassium titanyl phosphate, quartz and gallium arsenide. In the 1970s, the importance of organic materials was realized because of the promise of large NLO responses, high laser damage thresholds, fast optical responses, architectural flexibility and ease of fabrication. Following work with organic materials, the scrutiny of organometallics also began recently. In organometallics, the metal-ligand bonding is expected to display large molecular hyperpolarizability because of the transfer of electron density between the metal atom and the conjugated ligand system. In organometallics, the diversity of central metals, oxidation states and ligands fosters in optimization of the charge-transfer interactions. Keeping this in view, second- and third-order NLO properties of organometallics have been reviewed here, highlighting new materials that are emerging. Organometallics may have a wide range of applications in opto-electronics including integrated optics, optical switching, telecommunications, bistability and modulation.  相似文献   

20.
Two-component semi- and full interpenetrating polymer networks (IPNs) of soybean-oil-based uralkyd resin (UA) and polyethyl methacrylate (PEMA) were synthesized by the sequential technique. The elastomers obtained were characterized by mechanical properties such as tensile strength, elongation, and hardness (Shore A). The apparent densities of these samples were determined and compared. Glass-transition studies were carried out using differential scanning calorimetry. The thermal characterization of the elastomers was undertaken with the aid of thermogravimetric analysis. Phase morphology was studied by scanning electron microscopy. The effect of the compositional variation on the aforementioned properties was examined. The maximum elongation for both the semi- and full IPNs was observed at 60% UA and 40% PEMA. Glass-transition studies revealed that there was a phase separation in the semi-IPNs as two Tgs were obtained, whereas the full IPNs showed one Tg, indicating a single phase transition. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4302–4308, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号