首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polyacrylonitrile (PAN)‐based carbon fibers were electrochemically oxidized in aqueous ammonium bicarbonate with increasing current density. The electrochemical treatment led to significant changes of surface physical properties and chemical structures. The oxidized fibers showed much cleaner surfaces and increased levels of oxygen functionalities. However, it was found that there was no correlation between surface roughness and the fiber/resin bond strength, i.e. mechanical interlocking did not play a major role in fiber/resin adhesion. Increases in surface chemical functionality resulted in improved fiber/resin bonding and increased interlaminar shear strength (ILSS) of carbon fiber reinforced epoxy composites. The relationship between fiber surface functionality and the hydrothermal aging behavior of carbon fiber/epoxy composites was investigated. The existence of free volume resulted from poor wetting of carbon fibers by the epoxy matrix and the interfacial chemical structure were the governing factors in the moisture absorption process of carbon fiber/epoxy composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Mechanical properties and tribological behavior of epoxy resin (EP) and EP nanocomposites containing different shape nanofillers, such as spherical silica (SiO2), layered organo‐modified montmorillonite (oMMT) and oMMT‐SiO2 composites, were investigated. The SiO2‐oMMT composites were prepared by in situ deposition method and coupling agent modification, and transmission electron microscopy (TEM) analysis shows that spherical SiO2 is self‐assembled on the surface of oMMT, which forms a novel layered‐spherical nanostructure. The mechanical properties test results show that oMMT obviously improves the strength of EP and SiO2 enhances its toughness, but oMMT‐SiO2 exhibits a synergistic effect on toughening and reinforcing EP simultaneously. A pin‐on‐disc rig was used to test friction and wear loss of pure EP and EP nanocomposites. The tribological test results prove that these nanofillers with different shapes play different roles for improving the wear resistance of EP nanocomposites. Morphologies of the worn surfaces were studied further by scanning electron microscopy (SEM) observations, and it was clarified that the EP and EP nanocomposites undergo similar wear mechanisms. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
《先进技术聚合物》2018,29(4):1287-1293
The surface treatment of ultra‐high molecular weight polyethylene fiber using potassium permanganate and the mechanical properties of its epoxy composites were studied. After treatment, many changes were happened in the fiber surface: more O‐containing groups (―OH, ―C═O, and ―C―O groups), drastically decreased contact angles with water and ethylene glycol, slightly increased melting point and crystallinity, and formed cracks. Different contents (0.1–0.5 wt%) ultra‐high molecular weight polyethylene fibers/epoxy composites were prepared. The results indicated that the surface treatment decreased the tensile strength of epoxy composites, but increased the bending strength. When the fiber content was 0.3 wt%, the above properties reached the maximum. At the same fiber content, the interlaminar shear strength of the composites was increased by 26.6% up to the as‐received fiber composites. Dynamic mechanical analysis of the composites suggested the storage modulus and tanδ were decreased due to the surface treatment. Fractured surface analysis confirmed that the potassium permanganate treatment was effective in improving the interface interaction.  相似文献   

4.
The carbon fiber (CF) surface plays a critical role in the performance of CF composite materials. Adipic acid modified epoxy resin potassium (AAEK) prepared with epoxy resin and adipic acid, and KOH was employed as the CF sizing agent. Then, series of surface properties of AAEK‐treated carbon fiber (CF‐AAEK) including surface charge, morphology, and groups were characterized by using Faraday cup, friction coefficient gauge, atomic force microscopy, X‐ray photoelectron spectroscopy, and thermogravimetry. The results indicated that the dispersion coefficient of CF‐AAEK was increased by 1.72 times and there were synergistic effects for the dispersion of short CFs during the sizing treatment process with AAEK. In addition, the flexural strength of treated short CF composite proved to increase by 168%, which evaluated that the better CF dispersion in the matrix was a critical factor for the mechanical property improvement of short CF‐AAEK/epoxy resin composites.  相似文献   

5.
The most fundamental parameter that controls the properties of fiber/epoxy composites is fiber content. Thus, exact calculation of carbon fiber content is important for product quality control and process optimization. In this study, four methods for calculating fiber content of continuous carbon fiber/epoxy composites were investigated. These four methods are processing statistical (PS), optical microscopy (OM), thermogravimetric analysis (TGA), and carbonization-in-nitrogen (CIN). The results show that the CIN and PS methods have high repeatability with no more than 4.7 wt.% deviation, and a relatively exact estimation of fiber content can be obtained by using both of them. A larger difference was generated when the TGA and OM methods were used to determine the fiber content. This is because the small amount of samples required by these methods is not sufficiently representative of the whole carbon fiber composite structure. The PS and CIN methods can be used as approved ways to calculate fiber content of carbon fiber/epoxy composites effectively.  相似文献   

6.
树脂基复合材料具有比强度高、比模量大、耐高温、耐腐蚀、质轻等诸多优点,在航天军工、生物医疗、电子封装、体育器材等众多领域得到广泛应用。石墨烯作为一种典型的二维纳米材料,凭借其独特结构以及优异的物理化学性能而备受关注。近年来的研究表明石墨烯可以通过对增强纤维改性和对基体树脂改性的方法来提高树脂基复合材料的力学性能。本文介绍了石墨烯改性树脂基复合材料的增强增韧机理,对石墨烯改性纤维(碳纤维、玻璃纤维、芳纶纤维)增强复合材料以及树脂的改性方法进行了综述;着重阐述了石墨烯改性树脂基复合材料力学性能的研究进展,分析了石墨烯改性树脂基复合材料研究中依旧存在的两大问题,即石墨烯的分散性和界面结合问题,并对石墨烯改性树脂基复合材料的未来发展前景进行了展望。  相似文献   

7.
Boron nitride (BN) micro particles modified by silane coupling agent, γ‐aminopropyl triethoxy silane (KH550), are employed to prepare BN/epoxy resin (EP) thermal conductivity composites. The thermal conductivity coefficient of the composites with 60% mass fraction of modified BN is 1.052 W/mK, five times higher than that of native EP (0.202 W/mK). The mechanical properties of the composites are optimal with 10 wt% BN. The thermal decomposition temperature, dielectric constant, and dielectric loss increase with the addition of BN. For a given BN loading, the surface modification of BN by KH550 exhibits a positive effect on the thermal conductivity and mechanical properties of the BN/EP composites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Nano (Fe)MIL-101 particles were grafted on the short carbon fibers (SCFs) by in situ growth method to prepare (Fe)MIL-101@SCFs. The flame-retarded composites of epoxy resin (EP) were fabricated with combination of (Fe)MIL-101@SCFs and ammonium polyphosphate (APP). The composites showed good flame retardancy, smoke suppression, and mechanical properties simultaneously. The main heat release rate peak of the flame-retarded composites was reduced and delayed evidently in comparison with pristine EP. The high amount of residual char with coherent and dense structure was formed owing to the catalytic char formation of (Fe)MIL-101 as well as the strengthening action of SCF. The improvement in mechanical properties of the flame-retarded composite was due to the reinforcement effects of (Fe)MIL-101@SCFs and its action of interfacial adjustment. This research solved the contradiction between the flame retardancy and mechanical properties of EP, and proposed a new method to prepare the mechanically reinforced and flame retardant EP.  相似文献   

9.
Composites based on conductive organic/inorganic fillers dispersed in insulating matrix have been widely investigated because of their widespread applications such as electromagnetic shielding, electrostatic discharge, and sensors. In this context, novel composite materials based on epoxy resin matrix charged with polyaniline (PANI)‐doped para‐toluene sulfonic acid were elaborated. Fourier transform infrared spectroscopy, X‐ray diffraction and scanning electron microscopy were used to check the structure and the morphology of the samples. Viscoelastic behavior and thermal stability of the composites were explored by dynamic mechanical thermal analysis and thermogravimetric analysis. It was shown that the PANI particles exhibited a partial crystalline structure and were homogeneously dispersed in epoxy matrix. Consequently, this structure affected the thermal stability and viscoelastic properties of the composites. Furthermore, the dielectric and electrical properties were investigated up to 1 MHz. Measurements of dielectric properties revealed that with loading fillers in matrix, the dielectric parameters increased to high values at low frequency then decreased at values around 40 and 32 of real and imaginary parts, respectively, at 1 MHz with 15% of PANI content. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The curing characteristics of a brominated epoxy resin/dicyandiamide (DICY) system filled with silane-treated glass beads are studied using isothermal differential scanning calorimetry (DSC). Three different silane coupling agents, N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane, N-[2-(vinylbenzylamino)-ethyl]-3-aminopropyl-trimethoxysilane, and 3-glycidoxypropyl-trimethoxysilane, are applied. It is found that the reaction heats of the epoxy system are little affected by the curing temperature and the untreated glass fillers, but changed with the addition of silane-coated glass beads. The effect of glass beads on the curing reaction is more significant at the low curing temperature and conversion. The silane treatment results in changes in Tg, activation energy, reaction heat, reaction rate, and reaction order. Three silanes respond differently because of their differences in the activated reaction with the matrix system. Regardless of the various curing mechanisms involved, a simple kinetic expression can describe the curing extent at 170 and 180°C with a good accuracy for all systems studied. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2063–2071, 1997  相似文献   

11.
Bisphenol F based epoxy-acrylic latex with different amount of epoxy resin was successfully prepared by semi-continuous seeded emulsion polymerization. The resulting composite latexes had a narrow size distribution of about 105 nm in diameter. The DSC result showed that the epoxy resin and polyacrylate were grafting copolymerization. The FTIR spectra showed that the epoxy group had been introduced into the epoxy acrylic latex system, and the composite latex could be crosslinked with epoxy hardener at room temperature. The crosslinked composite latex film exhibited a high Tg compared to epoxy-acrylic latexes. The surface of the films with the epoxy resin was regular, and diffused into the polyacrylate phase in the epoxy-acrylic latexes films. Since the curing reactions occurred before latex particle coalescence stage, the surfaces of the cured epoxy-acrylate latex films had a number of interface particle. Compared with the acrylic latex, the thermal stability of the epoxy-acrylate latex was increased, and the stability of the cured film increased with increasing epoxy content.  相似文献   

12.
Curing characteristics of o-cresol novolac epoxy resin modified by 4,4-diaminodiphenylmethane bismaleimide (DDM-BMI) using FTIR were investigated and the glass transition temperature was measured. With the addition of DDM as hardener, the relative curing reaction conversion of DDM-BMI increased with equivalent weight ratio [R1 = (equiv wt summation of epoxy and DDM-BMI)/equiv wt of DDM] and weight ratio of epoxy and DDM-BMI (R2 = wt of epoxy resin/wt of DDM-BMI). Using phenol novolac resin (PN) as hardener, the curing reaction conversion of DDM-BMI was hardly changed, but the variation of that in the epoxy resin was observed with R2 change. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Intercalation and exfoliation behavior of organoclays in epoxy resin has been studied through XRD and DSC. It was found that the organoclays were easily intercalated by epoxy oligomer to form a stable epoxy/clay intercalated hybrid. Under appropriate conditions the clays were able to be further exfoliated as the epoxy resin was cured; thus, a nanocomposite was obtained. It was also found that the exfoliating ability of the organoclays was basically determined by the nature of the clays and the curing agent used. The exfoliation mechanism is discussed in this paper. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 115–120, 2001  相似文献   

14.
本文综述了国内外有关利用环氧树脂改性热塑性树脂共混体系研究的最新进展。着重阐述了环氧树脂在热塑性树脂之间的增容作用,如尼龙6(PA6)合金体系,改性聚苯乙烯塑料(ABS)合金体系,以及聚对苯二甲酸丙二醇酯(PTT)合金体系等。同时,介绍了利用环氧树脂的反应活性提高无机填料在聚合物中分散性研究的情况,如二氧化硅纳米粒子在聚醚砜(PES)中,以及滑石粉在聚丙烯(PP)中分散性的提高。最后,简介了环氧树脂改性热塑性树脂提高热塑性树脂物理机械性能方面的研究方向和成果并展望了环氧树脂在热塑性树脂改性研究中的前景。  相似文献   

15.
Uniform dispersion and strong interfacial interaction are two critical prerequisites for application of single‐walled carbon nanotubes (SWNTs) in polymer composites. To endow the composites with multifunctional feature, no damage on the chemical/electronic structure of SWNTs is also usually required. With these ends in view, two epoxide‐containing pyrene derivatives (EpPys) were designed, synthesized, and used as reactive noncovalent dispersants for developing multifunctional epoxy/SWNT composites. One having longer chain length between epoxide group and pyrene moiety, that is, EpPy‐16, shows higher dispersing efficiency and provides the nanotube dispersion with better stability, thus picking up for subsequent studies. Systematic characterization on SWNT/EpPy‐16 hybrid demonstrates that 13.2 wt % of EpPy‐16 is adsorbed on the SWNT surface through strong π‐stacking interaction, and intrinsic electronic structure of SWNTs is basically reserved. The solution‐based process adopted here preserves the good SWNT dispersing state in dispersion into the composites. Simultaneously, enhanced interfacial interaction is also realized by using EpPy‐16, which interacts noncovalently with SWNT but connects covalently to epoxy network. As a result, the composites acquire 37 and 22% increments in tensile strength and Young's modulus, respectively, relative to that of neat resin. A low‐electrical percolation threshold of 0.1 wt % SWNTs and improved thermal properties were also observed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Carbon black (CB) particles were employed as a reinforcing filler in carboxyl‐terminated butadiene acrylonitrile rubber (CTBN)/epoxy resin (diglycidyl ether of bisphenol‐A (DGEBA))/aromatic diamine (diamino diphenyl methane (DDM)) network polymer blends. The strength, modulus, and ability to absorb impact energy of the resulting composites were evaluated. The aim of this work was to determine the effects of interfacial interactions between components, and processing conditions (especially temperature) on mechanical properties. The application of high temperatures during the kneading process resulted in strong interfacial interactions between the CB particles and the CTBN. The formation of strong bonds at the CB/CTBN interfaces during kneading was the key factor in obtaining high strength and high impact energy absorbance. The composites also exhibited good adhesive strength during both shear and peel stress tests.  相似文献   

17.
In this paper, a polyether-ether-ketone (PEEK)/epoxy composite was prepared by using PEEK microparticles as the reinforcement. The nonisothermal differential scanning calorimetry (DSC) test was used to evaluate the curing reaction of PEEK/epoxy resin system. The curing kinetics of this system were examined utilizing nonisothermal kinetic analyses (Kissinger and Ozawa), isoconversional methods (Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose) and an autocatalytic reaction model. During these analyses, the kinetic parameters and models were obtained, the curing behavior of PEEK/epoxy resin system under dynamic conditions was predicted. The results show that isoconversional methods can adequately interpret the curing behavior of PEEK/epoxy resin system and that the theoretical DSC curves calculated by the autocatalytic reaction model are in good agreement with experimental data. Furthermore, the tensile elongation at break, tensile strength, flexural strength, compression strength and compression modulus increased by 81.6%, 33.66%, 36.53%, 10.98% and 15.14%, respectively, when PEEK microparticles were added in epoxy resin composites.  相似文献   

18.
Epoxy composites containing particulate fillers‐fused silica, glass powder, and mineral silica were investigated to be used as substrate materials in electronic packaging application. The content of fillers were varied between 0 and 40 vol%. The effects of the fillers on the thermal properties—thermal stability, thermal expansion and dynamic mechanical properties of the epoxy composites were studied, and it was found that fused silica, glass powder, and mineral silica increase the thermal stability and dynamic thermal mechanical properties and reduce the coefficient of thermal expansion (CTE). The lowest CTE value was observed at a fused silica content of 40 vol% for the epoxy composites, which was traced to the effect of its nature of low intrinsic CTE value of the fillers. The mechanical properties of the epoxy composites were determined in both flexural and single‐edge notch (SEN‐T) fracture toughness properties. Highest flexural strength, stiffness, and toughness values were observed at fillers content of 40 vol% for all the filled epoxy composites. Scanning electron microscopy (SEM) micrograph showed poor filler–matrix interaction in glass powder filled epoxy composites at 40 vol%. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The effects of crosslink functionality (fc), molecular weight between crosslinks (Mc), and chain stiffness display on the thermal and mechanical behavior of epoxy networks are determined. Both fc and Mc are controlled by blending different functionality amines with a difunctional epoxy resin. Chain stiffness is controlled by changing the chemical structure of the various amines. In agreement with rubber elasticity theory, the rubbery moduli are dependent on fc and Mc, but independent of chain stiffness. The glassy moduli and secondary relaxations of these networks are relatively independent of fc, Mc, and chain stiffness. However, the glass transition temperatures (Tg) of these networks are dependent on all three structural variables. This trend is consistent with free volume theory and entropic theories of Tg. fc, Mc, and chain stiffness control the yield strength of these networks in a manner similar to that of Tg and is the result that both properties involve flow or relaxation processes. Fracture toughness, as measured by the critical stress intensity factor (KIc), revealed that fc and Mc are both critical parameters. The fracture behavior is the result of the fracture toughness being controlled by the ability of the network to yield in front of the crack tip. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1371–1382, 1998  相似文献   

20.
The thermal expansion behaviors of neat epoxy resin and carbon fiber/epoxy unidirectional (UD) composites were experimentally and numerically studied in this paper. The dynamic mechanical analysis (DMA), thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and thermal conductivity measurement were used to measure the thermo-mechanical properties of epoxy resin at different temperatures. The dilatometer was used to measure the thermal strains and linear CTEs of neat epoxy resin and UD composites. In addition, a mesoscale finite element model based on the periodic temperature and displacement boundary conditions was presented to analyze the thermal expansion behaviors of UD composites. The resin-voids representative volume element (RVE) was used to calculate the thermo-mechanical properties of several kinds of resin-voids mixed matrix. From the results it can be found that the glass transition temperature of epoxy resin, porosity and fiber orientation angle have significant effects on the thermal expansion behaviors of UD composites. The mesoscale finite element analyses (FEA) have obvious advantages than various existing analysis models by comparing their predictive results. The distributions of thermal displacement, thermal stress and thermal strain were extracted between the carbon fiber, resin-voids mixed matrix and their interface, and also between the front and back surfaces of the loading direction, to further investigate thermal expansion structure effects of UD composites. This paper revealed that the mesoscale FEA based on periodic temperature and displacement boundary conditions can be also used for thermal expansion researches of other complex structure composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号