首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radical polymerization of 2-, 3-, and 4-methylstyrenes (MeSts) was investigated with benzoyl peroxide (BPO) as an initiator, in the presence of 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO). The polymerization was performed in bulk for 3.5 h at 95°C, and then continued for a defined time at 125°C, to give the corresponding poly(MeSt)s with narrow polydispersity in high yield. It was found that the polymerization proceeded in accordance with a living mechanism, because the molecular weight of the resulting polymers was proportional to the conversion, and to the reciprocal of the initial concentration of MTEMPO. It was found that steric hindrance between the methyl group of 2-MeSt, and the tetramethyl ones of MTEMPO, significantly contributed to the rate of polymerization, and to the stability of the growing polymer chain end. The stability decreased in the order of 2- > 3- > 4-MeSt, by occurrence of decomposition, which was caused by disproportionation of the growing chain end. However, the steric hindrance had no effect on the tacticity of the resulting polymer. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36 , 269–276, 1998  相似文献   

2.
The photo-controlled/living radical polymerization of tert-butyl methacrylate was performed using a (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) initiator and a 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) mediator in the presence of a (4-tert-butylphenyl)diphenylsulfonium triflate photo-acid generator. The bulk polymerization was carried out at 25 °C by irradiation with a high-pressure mercury lamp. Whereas the polymerization in the absence of MTEMPO produced a broad molecular weight distribution, the MTEMPO-mediated polymerization provided a polymer with a comparatively narrow molecular weight distribution around 1.4 without elimination of the tert-butyl groups. The living nature of the polymerization was confirmed on the basis of the linear correlations for the first-order time–conversion plots and conversion–molecular weight plots in the range below 50% conversion. The block copolymerization with methyl methacrylate also supported the livingness of the polymerization based on no deactivation of the prepolymer.  相似文献   

3.
Radical polymerization of 2-, 3-, and 4-chlorostyrenes (ClSts) was investigated with benzoyl peroxide (BPO) as an initiator, in the presence of 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO). The polymerization was performed in bulk for 3.5 h at 95°C and then continued for a defined time at 125°C to give the corresponding poly(ClSt)s with narrow polydispersity in high yield. It was found that the polymerization proceeded in accordance with a living mechanism in all cases, because the molecular weight of the resulting polymers was proportional to the conversion, and inversely proportional to the initial concentration of MTEMPO. Furthermore, the polymers obtained from 2- and 3-ClSts quantitatively act as initiators for the polymerization in the living radical manner, of styrene to give the corresponding block copolymers, except for poly(4-ClSt). The thermal stability of the living poly(ClSt)s was found to decrease in the order of 2- > 3- > 4-ClSt on the basis of the results of their postpolymerizations. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2371–2378, 1997  相似文献   

4.
The novel photo-living radical polymerization was determined using 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) and bis(alkylphenyl)iodonium hexafluorophosphate (BAI) as the photo-acid generator. The polymerization of methyl methacrylate was performed using azobisisobutylonitrile as an initiator in the presence of MTEMPO and BAI at room temperature by irradiation with a high-pressure mercury lamp to produce poly(methyl methacrylate) with a comparatively narrow molecular weight distribution (M w/M n?=?1.3–1.7). The polymerization proceeded by a living mechanism based on the fact that the first-order time-conversion plots linearly increased. A linear increase in the plots of the molecular weight versus the conversion also supported the living nature of the polymerization. It was found that MTEMPO had an interaction with the propagation chain end to control the molecular weight, while BAI weakened the interaction of MTEMPO with the propagation chain end to reduce the molecular weight distribution and polymerization time.  相似文献   

5.
The photo-living radical polymerization of methyl methacrylate (MMA) was performed at room temperature using (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) (r-AMDV) as the initiator, 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator, and (4-tert-butylphenyl)diphenylsulfonium triflate ( t BuS) as the photo-acid generator. The livingness of the polymerization was confirmed on the basis of linear increases in the ln([MMA]0/[MMA]t) vs. time and in the molecular weight vs. the conversion. The molecular weight distributions of the resulting polymers were around 1.45. The polymerization rate was dependent both on the t BuS/MTEMPO and MTEMPO/r-AMDV molar ratios. Furthermore, it was found that the polymerization had a photo-latency because the polymerization was retarded by the interruption of the irradiation; however, it was accelerated again by further irradiation without deactivation of the growing polymer chain ends.  相似文献   

6.
The 1,1‐diphenylethene (DPE) controlled radical polymerization of methyl methacrylate was performed at 80 °C by using AIBN as an initiator and DPE as a control agent. It was found that the molecular weight of polymer remained constant with monomer conversion throughout the polymerization regardless of the amounts of DPE and initiator in formulation. To understand the result of constant molecular weight of living polymers in DPE controlled radical polymerization, a living kinetic model was established in this research to evaluate all the rate constants involved in the DPE mechanism. The rate constant k2, corresponding to the reactivation reaction of the DPE capped dormant chains, was found to be very small at 80 °C (1 × 10?5 s?1), that accounted for the result of constant molecular weight of polymers throughout the polymerization, analogous to a traditional free radical polymerization system that polymer chains were terminated by chain transfer. The polydispersity index (PDI) of living polymers was well controlled <1.5. The low PDI of obtained living polymers was due to the fact that the rate of growing chains capped by DPE was comparable with the rate of propagation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

7.
The novel photo-living radical polymerization of methyl methacrylate (MMA) was determined using 2,2’-azobis(4-methoxy-2,4-dimethylvaleronitrile) (AMDV) and 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) in the presence of bis(alkylphenyl)iodonium hexafluorophosphate (BAI). The polymerization provided a comparatively narrow molecular weight distribution in the range of 1.4–1.7. The resulting PMMA contained no BAI fragments in its structure and had the 1-cyano-1,3-dimethyl-3-methoxybutyl radical and MTEMPO at the 1:1 molar ratio. The experimental molecular weight was in close agreement with the theoretical one when the initiator efficiency was taken into consideration. The plots of ln([MMA]0/[MMA]) vs. time and the molecular weight of PMMA vs. the conversion and vs. the reciprocal of the initial concentration of AMDV showed linear correlations, indicating that the polymerization proceeded in accordance with a living mechanism. It was found that the polymerization had a photo-switching ability, because the polymerization was interrupted by turning off the irradiation, and then restarted by the irradiation again.  相似文献   

8.
The photoradical polymerization of vinyl acetate was performed using 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator in the presence of bis(alkylphenyl)iodonium hexafluorophosphate (BAI). The MTEMPO/BAI system using 2,2’-azobis(isobutyronitrile) or 2,2’-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator did not succeed in controlling the molecular weight and produced polymers that showed a bimodal gel permeation chromatography with the broad molecular weight distribution. On the other hand, the polymerization using 1-(cyano-1-methylethoxy)-4-methoxy-2,2,6,6-tetramethylpiperidine and BAI proceeded by the living mechanism based on linear increases in the first order time–conversion and conversion–molecular weight plots. The molecular weight distribution also increased with the increasing conversion due to cloudiness of the solution as the polymerization proceeded. It was found that the polymerization had a photolatency because the propagation stopped by interruption of the irradiation and was restarted by further irradiation.  相似文献   

9.
The photoradical polymerization of vinyl acetate was performed using 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator in the presence of bis(alkylphenyl)iodonium hexafluorophosphate (BAI). The MTEMPO/BAI system using 2,2’-azobis(isobutyronitrile) or 2,2’-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator did not succeed in controlling the molecular weight and produced polymers that showed a bimodal gel permeation chromatography with the broad molecular weight distribution. On the other hand, the polymerization using 1-(cyano-1-methylethoxy)-4-methoxy-2,2,6,6-tetramethylpiperidine and BAI proceeded by the living mechanism based on linear increases in the first order time–conversion and conversion–molecular weight plots. The molecular weight distribution also increased with the increasing conversion due to cloudiness of the solution as the polymerization proceeded. It was found that the polymerization had a photolatency because the propagation stopped by interruption of the irradiation and was restarted by further irradiation.  相似文献   

10.
The nitroxide-mediated photo dispersion polymerization of methyl methacrylate (MMA) was performed by irradiation at room temperature using (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator, 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator, (4-tert-butylphenyl)-diphenylsulfonium triflate as the photo-acid generator, and polyvinylpyrrolidone (PVP) as the surfactant in a mixed solvent of methanol/water = 3/1 (v/v). The MTEMPO-mediated photo dispersion polymerization produced spherical particles of PMMA, while the uncontrolled photo dispersion polymerization without MTEMPO provided nonspherical particles. The size distribution of the spherical particles decreased as the PVP concentration increased. The spherical particles showed a comparatively narrow molecular weight distribution of ca. 1.6. The livingness of the polymerization was confirmed on the basis of the linear correlations of the first-order time–conversion plots and conversion–molecular weight plots. The simultaneous control of the size distribution and molecular weight was possible as long as the light penetrates into the particles.  相似文献   

11.
The photoradical polymerization of methyl methacrylate (MMA) was performed at room temperature using (2RS,2’RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator and 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator in the presence of (η6-benzene)(η5-cyclopentadienyl)FeII hexafluorophosphate (BzCpFeII). The bulk polymerization provided narrower molecular weight distributions (Mw/Mn = 1.4 − 1.5) than the solution polymerization in acetonitrile, although BzCpFeII was insoluble in MMA. The polymerization rate was retarded by an increase in the amount of BzCpFeII. BzCpFeII, which had no ability to control the molecular weight by itself, could control it through the interaction with MTEMPO. The interaction of BzCpFeII and MTEMPO was attributed to the electron transfer involving the MTEMPO–aminoxy anion redox system and the iron redox system. The polymerization was confirmed to occur in accordance with a living mechanism because linear correlations were obtained for both the plots of the first order time–conversion and the conversion–molecular weight.  相似文献   

12.
The radical polymerization of N‐(p‐vinylbenzyl)‐N‐vinylacetamide ( 1 ) prepared by the reaction of N‐vinylacetamide with p‐chloromethylstyrene was carried out by using radical initiators such as AIBN or BPO in benzene, chlorobenzene, or bulk. As a result, poly 1 was successfully isolated by dialysis (yield, 10–36%). The crosslinking reaction of poly 1 was carried out at 60–100 °C for 8 h. By using a radical initiator such as AIBN or BPO (3 mol %), the crosslinking reaction proceeded (yield, 63–79%). Moreover, the crosslinking reaction of poly 1 proceeded at 100 °C without a radical initiator in 50% yield. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2714–2723, 2006  相似文献   

13.
The living synthesis of poly(1,3‐cyclohexadiene) was performed with an initiator adduct that was synthesized from a 1:2 (mol/mol) mixture of N,N,N,N′‐tetramethylethylenediamine (TMEDA) and n‐butyllithium. This initiator, which was preformed at 65 °C, facilitated the synthesis of high‐molecular‐weight poly(1,3‐cyclohexadiene) (number‐average molecular weight = 50,000 g/mol) with a narrow molecular weight distribution (weight‐average molecular weight/number‐average molecular weight = 1.12). A plot of the kinetic chain length versus the time indicated that termination was minimized and chain transfer to the monomer was eliminated when a preformed initiator adduct was used. Chain transfer was determined to occur when the initiator was generated in situ. The polymerization was highly sensitive to both the temperature and the choice of tertiary diamine. The use of the bulky tertiary diamines sparteine and dipiperidinoethane resulted in poor polymerization control and reduced polymerization rates (7.0 × 10−5 s−1) in comparison with TMEDA‐mediated polymerizations (1.5 × 10−4 s−1). A series of poly(1,3‐cyclohexadiene‐block‐isoprene) diblock copolymers were synthesized to determine the molar crossover efficiency of the polymerization. Polymerizations performed at 25 °C exhibited improved molar crossover efficiencies (93%) versus polymerizations performed at 40 °C (80%). The improved crossover efficiency was attributed to the reduction of termination events at reduced polymerization temperatures. The microstructure of these polymers was determined with 1H NMR spectroscopy, and the relationship between the molecular weight and glass‐transition temperature at an infinite molecular weight was determined for polymers containing 70% 1,2‐addition (150 °C) and 80% 1,4‐addition (138 °C). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1216–1227, 2005  相似文献   

14.
A living polymerization of ethylphenylketene (EPK) was accomplished. When polymerization of EPK was carried out with butyllithium as an initiator in tetrahydrofuran (THF) at −20 °C, EPK was completely consumed within 5 min, and the corresponding polyester with narrow molecular weight distribution (Mw /Mn ∼ 1.1) was obtained almost quantitatively. Kinetic study of the polymerization at −78 °C revealed that conversion of EPK agreed with the first‐order kinetic equation, and that Mn of the polymer increased in virtually direct proportion to the conversion. Along with these results, successful results in postpolymerization at −20 °C strongly supported living mechanism of the present polymerization. Further, lithium alkoxides having a methoxy group, styryl moiety, and nitroxyl radical, also successfully initiated polymerization of EPK to afford the corresponding polymers having functional initiating ends. In the polymerization with varying feed ratio [EPK]0/[initiator]0, the linear relationship between the feed ratio and Mn of the obtained polymer was observed, while maintaining narrow Mw /Mn. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1073–1082, 2000  相似文献   

15.
In order to clarify the initiator factor dominating the molecular weight distribution of the resulting polymer, the nitroxide-mediated photo-living radical polymerization of methyl methacrylate was performed using eight different kinds of azoinitiators: i.e., 2,2′-azobisisobutyronitrile, 2,2′-azobis(2-methylbutyronitrile), 2,2′-azobis(2,4-dimethylvaleronitrile), 1,1′-azobis(cyclohexane-1-carbonitrile), racemic-(2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile), meso-(2RS,2′SR)-azobis(4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobis(2-methylpropionate), and 2,2′-azobis(N-butyl-2-methylpropionamide). The bulk polymerization was carried out at room temperature for 3 h using 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator in the presence of bis(alkylphenyl)iodonium hexafluorophosphate as the photo-acid generator. All the initiators provided a molecular weight distribution below 1.7 for the MTEMPO/initiator ratio of 2, although at the ratio of unity, about half of the initiators produced the molecular weight distribution around 2.3–3.4. The UV analysis revealed that the initiators having a higher ε value tended to more strictly control the molecular weight and provide a higher initiator efficiency. The half-lives of the initiators had little effect on the molecular weight control and initiator efficiency.  相似文献   

16.
This work studies the synthesis of copolymers (MACO‐St) of castor oil maleate (MACO) and styrene (St) initiated using benzoyl peroxide (BPO) as free radical initiator through suspension polymerization. The study investigates the effects of temperature (100–140 °C), the molar ratio between styrene and MACO (2:1–4:1), BPO concentration (0.10–0.20 wt%), and water concentration (50–100 wt%) on the molecular weight distribution, thermal stability, viscosity, and biodegradability of the copolymers. Suspension polymerization allows the production of a broad range of number average molecular weight (3465–18 995 g mol?1) and molecular weight distributions with dispersions (?) ranging from 1.8 to 4.4. The reaction presents high yields of castor oil into copolymers (>90%), which displays thermal stability up to 200 °C and are highly biodegradable according to the International Organization of Standardization reference.  相似文献   

17.
Polymerizations of styrene under emulsion reversible‐addition fragmentation chain transfer polymerization conditions are reported. Using a recently developed nanoprecipitaiton process, emulsion particles were formed by the precipitation of an acetone solution of a macroRAFT agent into an aqueous solution of poly(vinyl alcohol). The particles were then swollen with monomer and subsequently polymerized. Emulsion polymerizations were performed at 65 and 75 °C in which either KPS, BPO, or a combination of both was used as an initiating source. Reactions were also performed at temperatures over 100 °C in which the thermal initiation of styrene was used as an initiating source. In all cases, the polymerizations proceeded in a living manner, yielding polymers that showed an incremental increase in molecular weight with time and had narrow molecular weight distributions. Plots of number‐ average molecular weight versus conversion were linear, indicating a controlled polymerization. The resulting latices were colloidally stable and gave particle size distributions with a typical average particle diameter in the 150 nm range. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5708–5718, 2006  相似文献   

18.
The ylide 4-picolinium, p-chloro phenacylide-initiated thermal polymerization of ethyl methacrylate (EMA) was studied. 4-Picolinium p-chloro phenacylide induces the thermal polymerization of ethyl methacrylate at 65°C. The rate of polymerization (Rp) rose as the initiator concentration increased from 2 × 10?3 to 4 × 10?3 M and the initiating exponent was computed as 1.9. The Rp decreased as the concentration of ylide increased from 6 × 10?2 to 1M. The greater initiator concentration also affected the molecular weight inversely. The polymerization was carried out at different temperatures and the overall activation energy was computed as 4.08 Kcal/mol. Polymerization was inhibited in the presence of hydroquinone as a radical scavenger. Kinetic studies and other data show that the overall polymerization takes place in a radical mechanism. The various kinetic parameters, such as the rate and average degree of polymerization, molecular weight, and energy of activation of the present system, were evaluated.  相似文献   

19.
2,2,6,6‐Tetramethyl‐4‐[d‐(+)‐10‐camphorsulfonyl]‐1‐piperidinyloxy was synthesized and used as a chiral nitroxide for the bulk polymerizations of styrene initiated with benzoyl peroxide (BPO), tetraethylthiuram disulfide (TETD), and thermal initiation. The results showed that the polymerizations proceeded in a controlled/living way; that is, the kinetics presented approximately first‐order plots, and the number‐average molecular weights of the polymers with narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight) increased with the monomer conversion linearly. The molecular weight distributions in the case of thermal initiation were narrower than those in the case of BPO and TETD, whereas the polymerization rate with BPO or TETD as an initiator was obviously faster than that with thermal initiation. In addition, successful chain‐extension reactions were carried out, and the structures of the obtained polymers were characterized by gel permeation chromatography and 1H NMR. The specific rotations of the polymers were also measured by polarimetric analysis. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1522–1528, 2006  相似文献   

20.
Functional aluminum alkoxides, such as Et3–pAl(O? CH2? X)p, where p = 1,3 and X = a functional group, are very effective initiators for the (D, L)-lactide polymerization in toluene at 70°C. The coordination-insertion type of polymerization is living. Linear polyesters of a predictable molecular weight and a narrow molecular weight distribution are obtained within the period of time required for the total monomer conversion. The functional group (X) associated with the active alkoxy group of the initiator is selectively and quantitatively attached to one chain end, whereas the second end group is systematically a hydroxyl function resulting from the hydrolysis of the living growing site. Asymmetric telechelic polylactides are thus obtained in a perfectly controlled way. A kinetic study has shown that the polymerization is first order in both the monomer and initiator. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号