首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study has been made of the spectral dependence of the Cotton-Mouton effect (CME) quadratic in magnetic field, nonreciprocal birefringence (NB) linear in magnetic field, and the Faraday effect (FE) in the cubic magnetic semiconductor γ-Dy2S3. Unlike the FE, the CME and the NB in this crystal are anisotropic, with the pattern of the anisotropy being dependent on the photon energy. The dependence of the CME and NB dispersion on the direction of the magnetic field B indicates contribution from a variety of electronic transitions and mechanisms to these phenomena. It is shown that the resonant contributions to the CME and NB in the transparency region originate from electronic transitions near E?3.4 eV (beyond the band edge E g=2.8 eV), which are likely transitions from the localized ground state of the Dy3+ ion to states derived from mixing of the band and 4f N?1 5d states of the dysprosium ion. The character of the CME anisotropy in the transparency region and near the local electronic transition 6 H 15/26 F 3/2 connecting states of the unfilled 4f shell of the Dy3+ ion suggests the presence of a strong axial component of the crystal field acting on the rare earth ion.  相似文献   

2.
The temperature dependences of the heat capacity (C p ) and the thermal conductivity (κ) in the temperature range from 300 to 773 K of polycrystalline gadolinium sulfide samples (γ-GdS y ) with the deviation of the composition from the integer stoichiometric were studied. It was found that the thermal conductivity of gadolinium sulfides decreases monotonically and reaches 0.74 W/(m K) at T = 773 K for the composition y = 1.479, which is much lower than for the known single-crystal samples. The influence of morphological defects (boundaries of crystallites and dislocations) on the intensity of scattering of phonons is studied. It has been established that ceramic samples of gadolinium sulphides have a large heat capacity and a lower thermal conductivity, in comparison with monocrystalline samples of the same composition.  相似文献   

3.
The magnetoresistance of ceramic YBa2Cu3O~6.5 HTSC samples is studied as a function of the mutual orientation of the current I and external magnetic field H ext at T = 77.3 K in magnetic fields of up to ~500 Oe. It is found that, if the demagnetization factor D is taken into account, the effective critical field of complete penetration of Josephson vortices into weak links H c2J eff does not depend on the mutual orientation of I and H ext. The lower critical field H c1A eff associated with the beginning of penetration of Abrikosov vortices into superconducting grains increases substantially with the angle between I and H ext. The strongest variation with the mutual orientation of I and H ext is exhibited by the critical field of the Bragg glass-vortex glass first-order phase transition H BG-VG eff and by the magnetoresistance jump at this phase transition.  相似文献   

4.
The temperature dependences of the quenching rate constants of the states N2 (${\rm C} \ {^{3}{ \rm \Pi }_{u}}${\rm C} \ {^{3}{ \rm \Pi }_{u}} v=0,1) by N2 (X) and of the state N2 (${\rm C} \ {^{3}{ \rm \Pi }_{u}} \ v^{\prime}=0${\rm C} \ {^{3}{ \rm \Pi }_{u}} \ v^{\prime}=0) by O2 (X) are studied. Time-resolved light emission from the gas was analyzed in the temperature range from 300 K to 210 K keeping the gas at constant density. In case of quenching by N2 (X), the quenching rate constant for the vibrational level v= 0 increases by (13 ±3)% with gas cooling whereas the quenching rate constant for v= 1 decreases by (5.0 ±2.5)% in this temperature range. For quenching by O2 (X), the quenching rate constant decreases by (3 ±2)% with gas cooling. The temperature variation of the N2 (C 3Πu v=0) emission intensity for pure nitrogen and dry air are calculated using the obtained quenching rate constants and is compared with the experimental data available in the literature.  相似文献   

5.
The dependence of the magnetization relaxation rate S = ?d lnM/dlnt on temperature T is measured in YBa2Cu3O7 ? δ samples with various oxygen concentrations. It is found that the S(T) curve changes qualitatively when oxygen deficit δ exceeds the threshold value δth = 0.37. For δ < δth (T c > 60 K, where T c is the superconducting transition temperature), function S(T) has the well-known peak at T/T c = 0.4. For δ > δth (at T c < 51 K), this peak transforms into a plateau and a new sharp peak appears at T/T c = 0.1. The threshold value δth of the oxygen deficit corresponds to the transition of the sample from the disordered state into the ordered state of oxygen vacancies. We consider the change in the shape of the S(T) curve as a macroscopic manifestation of this transition.  相似文献   

6.
The influence of interaction between anisotropic γ-Fe2O3 nanoparticles on their coercive force H c is studied. In samples where the degree of homogenization of anisotropic γ-Fe2O3 nanoparticles is high owing to mechanical, ultrasonic, and magnetic dispersion with subsequent filtering of resulting suspensions, H c is almost independent of volume concentration η of the particles when η varies between 4 × 10−4 and 10−1. In samples homogenized only mechanically, the H c versus logη dependence is linear.  相似文献   

7.
We investigate the kinetics of photodarkening and recording of holographic diffraction gratings in amorphous As4S3Se3 thin-film structures doped with tin (Sn) in concentrations of 0–10 at %. It is established that an increase in the Sn concentration leads to a decrease in the photodarkening rate and degree. The photodarkening kinetics is approximated by a stretched exponential function. It is found that an increase in the Sn concentration leads to a decrease in the transmission (photodarkening) variation in the investigated As4S3Se3–Sn films. It is determined that, in the recording of holographic diffraction gratings at a Sn concentration of 3–8 at %, the As4S3Se3–Sn films exhibit the maximum sensitivity and diffraction efficiency of the recorded gratings. It is shown that the dependence of diffraction efficiency on the As4S3Se3 film thickness has the maximum at a film thickness of 4 µm.  相似文献   

8.
Transportation and thermodynamic properties of misfit-layered polycrystalline [Ca2CoO3]0.62[CoO2] were measured in order to clarify the nature of metal– semiconductor transition (MST) at T MS≈400 K, above which the simultaneous decrease of resistivity and increase of thermopower with temperature give rise to a great enhancement of thermoelectric power factor up to 1000 K. A first-order phase transition characteristic around T MS was revealed by anomalies of resistivity, differential scanning calorimetry, and thermal expansion. The first-order characteristic of the MST can be rationalized from the Virial theorem at an itinerant to localized electron transition in the narrow e T band within the [CoO2] plane. Above T MS, the reduction of the retained delocalized states within the matrix of localized states and the enhancement of charge carrier effective mass with increasing temperature might account for the considerable enhancement of the thermopower.  相似文献   

9.
The dependence of thermal properties of Ag8In14Sb55Te23 phase-change memory materials in crystalline and amorphous states on temperature was measured and analyzed. The results show that in the crystalline state, the thermal properties monotonically decrease with the temperature and present obvious crystalline semiconductor characteristics. The heat capacity, thermal diffusivity, and thermal conductivity decrease from 0.35 J/g K, 1.85 mm2/s, and 4.0 W/m K at 300 K to 0.025 J/g K, 1.475 mm2/s, and 0.25 W/m K at 600 K, respectively. In the amorphous state, while the dependence of thermal properties on temperature does not present significant changes, the materials retain the glass-like thermal characteristics. Within the temperature range from 320 K to 440 K, the heat capacity fluctuates between 0.27 J/g K and 0.075 J/g K, the thermal diffusivity basically maintains at 0.525 mm2/s, and the thermal conductivity decreases from 1.02 W/m K at 320 K to 0.2 W/m K at 440 K. Whether in the crystalline or amorphous state, Ag8In14Sb55Te23 are more thermally active than Ge2Sb2Te5, that is, the Ag8In14Sb55Te23 composites bear stronger thermal conduction and diffusion than the Ge2Sb2Te5 phase-change memory materials.  相似文献   

10.
Magnetic and galvanomagnetic properties of single crystals of a new dilute magnetic semiconductor p-Sb2?xCrxTe3 (x = 0, 0.0115, 0.0215) are investigated in a temperature range of 1.7–300 K. A ferromagnetic phase with a Curie temperature of TC ≈ 5.8 (x = 0.0215) and 2.0 K (x = 0.0115) is detected. The easy magnetization axis is parallel to the C3 crystallographic axis. Analysis of the Shubnikov-de Haas effect observed in these crystals in strong magnetic fields leads to the conclusion that the hole concentration decreases as a result of doping with Cr. Negative magnetoresistance and the anomalous Hall effect are observed in Cr-doped samples at liquid helium temperature.  相似文献   

11.
The magnetic phase diagram of copper nitrate monohydrate Cu(NO3)2 · H2O and the basic parameters of its magnetic subsystem have been determined by measuring the thermodynamic properties of this compound. This compound becomes antiferromagnetically ordered at T N = 3.6 K, undergoes the spin-flop and spin-flip transitions at H C1 ~ 0.06 T and H C2 ~ 1.1 T, respectively, at low temperatures. The magnetization of Cu(NO3)2 · H2O at T SR = 2.7 K exhibits an additional anomaly, which is likely attributed to the spin-reorientation transition.  相似文献   

12.
Magnetic and superconducting properties of polycrystalline samples of RuSr2Gd1.5Ce0.5Cu2O(10 − δ), asprepared (by solid-state reaction) and annealed in pure oxygen at different pressure are presented. Specific heat and magnetization were investigated in the temperature range 1.8–300 K with a magnetic field up to 8 T. Specific heat, C (T), shows a jump at the superconducting transition (with onset at T ≈ 37.5 K) and a Schottky-type anomaly below 20 K. It is found that curves C(T) taken for different values of magnetic field have the same crossing point (at T * ≈ 2.7 K) for all samples studied. At the same time, C(H) curves taken for different temperatures have a crossing point at a characteristic field H * ≈ 3.7 T. These effects are manifestations of the crossing-point phenomenon, which is supposed to be inherent for strongly correlated electron systems.  相似文献   

13.
Positive terahertz photoconductivity has been observed in underdoped high-temperature superconductors YBa2Cu3O7–δ at temperatures somewhat higher than the midpoint of the superconducting transition. The amplitude of the effect is almost independent of the temperature and the power of the incident radiation if the latter exceeds a certain threshold value. The mechanisms responsible for the appearance of the effect are discussed.  相似文献   

14.
A method has been developed for fabricating nanoporous matrices based on anodic aluminum oxide for the deposition of ferromagnetic nanoparticles in them. The modes of deposition of strontium ferromolybdate thin films prepared by the ion-plasma method have been worked out, and the magnetic and magnetoresistive properties, structure, and composition of the films have been investigated. It has been revealed that the microstructure and properties of the strontium ferromolybdate films deposited by ionplasma sputtering depend on the deposition rate and the temperature of the substrate. Based on the measurement of the electrical resistivity of nanoheterostructures in a magnetic field, it has been found that the magnetoresistance reaches 14% at T = 15 K and B = 8 T, which is due to the manifestation of tunneling magnetoresistance.  相似文献   

15.
The character of the evolution of a system of weak links in granular high-temperature superconductors under the action of an external magnetic field H ext has been studied by measuring the current-voltage characteristics E(j)Hext = constE{(j)_{{H_{ext}} = const}} of YBa2Cu3O7 − δ (δ ≈ 0.05) ceramic samples. The measurements have been performed at T = 77.3 K in a range of very weak magnetic fields 0 < H ext ≲ 0.5H c2J, where H c2J is the upper critical field of the Josephson weak links. The results have been used to construct the field dependences of the magnetoresistance Δρ(H ext) of the superconducting ceramics. It has been established that the parameters of the power equation E = A(jj cJ)ν and the magnetoresistance Δρ are nonmonotonic functions of the external magnetic field. The presence of extrema in the curves A(H ext), j cJ(H ext), ν(H ext), and Δρ(H ext) indicates that different systems of weak links between grain boundaries, which are capable of forming extended Josephson contacts, undergo sequential transitions to a resistive state with an increase in H ext.  相似文献   

16.
-Fe2O3 particles with an average size of 10 nm were prepared by heating the precipitates obtained from a homogeneous solution of stearic acid and hydrated iron (III) nitrate. The compositional and thermal characteristics of the precipitates were studied with the aid of Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC). Presence of -Fe2O3 nanoparticles in the heat treated product was established by X-ray diffraction (XRD) investigations. The average particle size was estimated from the XRD patterns by single line profile analysis and directly from transmission electron microscopic (TEM) images. Kinetic analysis of the calorimetric data revealed that nucleation and growth type kinetic law remain operative during the process and the activation energy of the process is 115 kJ/mol.  相似文献   

17.
The penetration of a magnetic field into superconducting grains and weak links of YBa2Cu3O7?δ ceramic high-temperature superconductors is investigated using measurements of the transverse and longitudinal magnetoresistances at T=77.3 K and 0≤H≤~500 Oe as a function of the transport current in the range ~0.01≤I/I c ≤~0.99. The effects associated with the complete penetration of Josephson vortices into weak links of the high-temperature superconductor in magnetic fields Hc2J, the onset of penetration of Abrikosov vortices into superconducting grains in magnetic fields Hc1A, and the first-order transition from the Bragg glass phase to the vortex glass phase in fields HBG-VG are revealed and interpreted. The I-H phase diagrams YBa2Cu3O7?δ high-temperature superconductors are constructed for IH and IH.  相似文献   

18.
The specific heat of [NH2(CH3)2]2ZnCl4 was measured calorimetrically in the temperature region 80–300 K. As the temperature T decreases, the C p (T) dependence indicates a phase transition sequence, with the phase transition at T6=151 K observed for the first time. The thermodynamic characteristics of the crystal were refined. The transformation occurring at T2=298.3 K is shown to be an incommensurate-commensurate phase transition.  相似文献   

19.
This study aims at establishing the interrelation between the current-carrying capacity and peculiarities of magnetoresistance of granular YBa2Cu3O7 ? δ HTSCs (T c = 92.5 K). The transverse magnetoresistance of several batches of YBa2Cu3O7 ? δ HTSC samples with noticeably different values of critical supercurrent density j c is measured in magnetic fields H ext up to H ext max ≈ 500 Oe in a wide range of transport currents (5 mA ≤ I ≤ 1600 mA) at T = 77.4 K. Samples with relatively high values of j c (H ext = 0) ≥ 100 A/cm2 do not exhibit any anomalies in their field dependences. Magnetoresistance jumps δρBG-VG273K are observed for samples with low values of j c ≥ 20 A/cm2 in fields H BG-VG ≈ 200–260 Oe. The width ΔH BG-VG of the anomalous resistance region increases upon an increase in I. The magnetoresistance jumps decrease with increasing I in increasing field H ext(0 → H ext max ) and increase in decreasing field H ext(H ext max → 0). It is found that these peculiarities of the field dependences of magnetoresistance are associated with a first-order phase transition (in magnetic field) in the vortex structure of YBa2Cu3O7 ? δ HTSCs of the Bragg glass-vortex glass type.  相似文献   

20.
The current-carrying capability of the second-generation HTSC tapes based on GdBa2Cu3O7?x (GdBCO), produced by the SuperOx Company by the pulsed laser deposition method is studied. Critical currents inmagnetic fields aremeasured by resistive andmagnetic (using a SQUID magnetometer) methods. The results obtained are compared with characteristics of an YBCO tape grown by chemical deposition (SuperPower, USA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号