首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To access the hitherto almost unknown class of clustered transition metal carbonyl cations, the trimetal dodecacarbonyls M3(CO)12 (M = Ru, Os) were reacted with the oxidant Ag+[WCA], but yielded the silver complexes [Ag{M3(CO)12}2]+[WCA] (WCA = [Al(ORF)4], [F{Al(ORF)3}2]; RF = –OC(CF3)3). Addition of further diiodine I2 to increase the redox potential led for M = Ru non-specifically to divalent mixed iodo-RuII-carbonyl cations. With [NO]+, even the N–O bond was cleaved and led to the butterfly carbonyl complex cation [Ru4N(CO)13]+ in low yield. Obviously, ionization of M3(CO)12 with retention of its pseudo-binary composition including only M and CO is difficult and the inorganic reagents did react non-innocently. Yet, the radical cation of the commercially available perhalogenated anthracene derivative 9,10-dichlorooctafluoroanthracene (anthraceneHal) is a straightforward accessible innocent deelectronator with a half-wave potential E1/2 of 1.42 V vs. Fc0/+. It deelectronates M3(CO)12 under a CO atmosphere and leads to the structurally characterized cluster salts [M3(CO)14]2+([WCA])2 including a linear M3 chain. The structural characterization as well as vibrational and NMR spectroscopies indicate the presence of three electronically independent sets of carbonyl ligands, which almost mimic M(CO)5, free CO and even [M(CO)6]2+ in one and the same cation.

Trimeric M3(CO)12 (M = Ru, Os) reacts with typical inorganic oxidants to unwanted side products. Yet, the 9,10-dichlorooctafluoroanthracene radical cation deelectronates these under CO pressure to give the first homotrimetallic [M3(CO)14]2+ salts.  相似文献   

2.
Summary Reinvestigation of the reaction of M(CO)6 (M=Cr, Mo or W) with KOH has been found to provide a very convenient route to the K[M2H(CO)10] compounds (M=Cr, Mo or W). The reaction involving Cr(CO)6 yields new potassium derivatives containing [Cr2(CO)10]2– and [HCr(CO)5] species; also K[Cr2D(CO)10] is produced from the Cr(CO)6/KOD interaction in C2D5OD. The reaction involving two different group 6 metal carbonyls yields [MM(CO)10(-H)] (MM=CrMo, CrW or WMo) species as their K+ and PPN+ [bis(triphenylphosphine)iminium] salts.  相似文献   

3.
New complexes {M(CO)4[Ph2P(S)P(S)Ph2]} (M = Cr, Mo and W), (1a)–(3a), [(1a), M = Cr; (2a), M = Mo; (3a), M = W] and {M2(CO)10[-Ph2P(S)P(S)Ph2]} (M = Cr, Mo, W), [(1b)–(3b) [(1b), M = Cr; (2b), M = Mo; (3b), M = W]] have been prepared by the photochemical reaction of M(CO)6 with Ph2P(S)P(S)Ph2 and characterized by elemental analyses, f.t.-i.r. and 31P-(1H)-n.m.r. spectroscopy and by FAB-mass spectrometry. The spectra suggest cis-chelate bidentate coordination of the ligand in {M(CO)4[Ph2P(S)P(S)Ph2]} and cis-bridging bidentate coordination of the ligand between two metals in (M = Cr, Mo and W).  相似文献   

4.
Summary The metal complexes of the type [M(SB)2(H2O)2] and [M(SB)2][where M = MnII, CoII, NiII or CuII, M = ZnII CdII, HgII and PbII and SBH = 2-(2-hydroxyacetophenone)imino-5-(p-anisyl)-1,3,4-oxadiazole] have been prepared and characterised by elemental analyses, thermal analyses, magnetic measurements, electronic and infrared spectral studies. The complexes [M(SB)2(H2O)2] possess octahedral structures, whereas complexes [M(SB)2] are tetrahedral. The crystal field parameters of the CoII and NiII complexes are also calculated.  相似文献   

5.
Preparation, Properties, and Molecular Structures of a Rigid Tridentate Chelate Ligand N, N′-Bis(diphenylphosphino)-2, 6-diaminopyridine with MII and M0 Transition Metals [MII = Ni, Pd, Pt; M0 = Cr, Mo, W] The reaction of chlorophenylphosphane and 2, 6-Diaminopyridine give N, N′-Bis-(diphenylphosphino)-2, 6-diaminopyridine (PNP). Two types of complexes [M(PNP)Cl]Cl · L (M = Ni, L = H2O; M = Pd, L = C2H5OH; M = Pt) and mer-[M(PNP)(CO)3] · 2 THF (M = Cr, Mo, W) have been prepared using PNP. These coordination compounds have been characterized by means of i.r., u.v., 31P and 1H n.m.r. measurements. The determination of the molecular structure of the two triclinic substances mer-[Mo(PNP)(CO)3] · 2 THF and [Ni(PNP)Cl]Cl · H2O show that the octahedral Mo(d6) and the square planar nickel (d8) compounds contain a nearly planar tridentate chelate ring system (two fused five-membered rings of the type ) in which the observed bond distances are in accordance with a π electron delocalization effect. The observed gram susceptibility of the diamagnetic Ni(d8) compound remains unchanged between 293 and 410 K. The relative activation property for a homogenous catalytic standard hydrogenation reaction of styrene to ethylbenzene decreases in series of catalysts of type [M(PNP)Cl]Cl · L with MII = Ni > Pd > Pt.  相似文献   

6.
New Phosphorus-bridged Transition Metal Carbonyl Complexes. The Crystal Structures of [Re2(CO)7(PtBu)3], [Co4(CO)10(PtBu)2], [Ir4(CO)6(PtBu)6], and [Ni4(CO)10(PiPr)6], (PtBu)3 reacts with [Mn2(CO)10], [Re2(CO)10], [Co2(CO)8] and [Ir4(CO)12] to form the multinuclear complexes [M2(CO)7(PtBu)3] (M = Re ( 1 ), Mn ( 5 )), [Co4(CO)10(PtBu)2] ( 2 ) and [Ir4(CO)6(PtBu)6] ( 3 ). The reaction of (PiPr)3 with [Ni(CO)4] leads to the tetranuclear cluster [Ni4(CO)10(PiPr)6] ( 4 ). The complex structures were obtained by X-ray single crystal structure analysis: ( 1 : space group P1 (Nr. 2), Z = 2, a = 917.8(3) pm, b = 926.4(3) pm, c = 1 705.6(7) pm, α = 79.75(3)°, β = 85.21(3)°, γ = 66.33(2)°; 2 : space group C2/c (Nr. 15), Z = 4, a = 1 347.7(6) pm, b = 1 032.0(3) pm, c = 1 935.6(8) pm, β = 105.67(2)°; 3 : space group P1 (Nr. 2), Z = 4, a = 1 096.7(4)pm, b = 1 889.8(10)pm, c = 2 485.1(12) pm, α = 75.79(3)°, β = 84.29(3)°, γ = 74.96(3)°; 4 : space group P21/c (Nr. 14), Z = 4, a = 2 002.8(5) pm, b = 1 137.2(8) pm, c = 1 872.5(5) pm, β = 95.52(2)°).  相似文献   

7.
Clusters of the type M2Mn4(CO)18 with main Group III metals (M  In, Ga) have been synthesized for the first time by allowing the metals to react in a bomb tube with Mn2(CO)10, Hg[Mn(CO)5]2, or Hg and Mn2(CO)10; In2Mn4(CO)18 also was formed by thermolysis of In[Mn(CO)5]3 in the presence of xylene. All M2Mn4(CO)18 compounds were shown by X-ray analysis to be isomorphous (space group I41/a). They contain a planar bridged ring of 2M and 2 Mn atoms, in which 2 Mn(CO)4 groups form the MnMn bond, each being connected with 2 [μ-MMn(CO)5] units; the Mn(CO)5 ligands at M have trans-positions with respect to the planar metal ring. The new clusters coordinate donor molecules such as pyridine or acetone at M (coordination number 3) to form complexes M2Mn4(CO)18 · 2 D (M  In, D  pyridine, acetone; M  Ga, D  pyridine), with M having a coordination number of 4. In pyridine dissociation of Mn(CO)5? anions takes place without decomposition of the metal ring.Hg[Mn(CO)5]2 was prepared using a new method by reaction of Hg with Mn2(CO)10 in a bomb tube.  相似文献   

8.
Summary The complexes [MI2(CO)3(NCMe)2] (M=Mo or W) react with one molar equivalent of L in CH2Cl2 at room temperature initially to afford the mononuclear sevencoordinate complexes [MI2(CO)3(NCMe)L] which have been isolated for L-PPh3, AsPh3, SbPh3, PPh2Cy or P(OPh3)3. Many of these complexes dimerise to give the iodide bridged compounds [{M(–I)I(CO)3L}2]via displacement of acetonitrile. When L=PPhCy2, PCy3, PEt3 or P(OMe)3 only the dimeric complexes have been isolated. The ease of dimerisation of the mononuclear complexes [MI2(CO)3(NCMe)L] is discussed in terms of the electronic and steric effects of the ligands, L. Low temperature13C n.m.r. spectroscopy of the mononuclear [Wl2(CO)3(NCMe)(EPh3)](E=P or As) complexes are interpreted as suggesting the likely stereochemistry of these seven-coordinate complexes.  相似文献   

9.
Summary A series of mixed-ligand complexes of group VIII metals, M(DIAFO)2(NCS)2 and M(DIAFH)2X2 (M = FeII, CoII, NiII, X = NCS, Cl) with the 3,3-bridged derivative of 2,2-bipyridyl (bipy) (1) were prepared, where DIAFO (2) and DIAFH (3) are 4,5-diazafluoren-9-one and 4,5-diazafluoren-9-hydrazone, respectively. These complexes were investigated by i.r., u.v.-vis-near i.r. spectroscopy and by variable-temperature magnetic susceptibility measurements. The electronic spectra show that the two ligands exert a field strength far removed from the FeII cross-over value. All the complexes are paramagnetic, following the Curie-Weiss law in the 77–300 K range. A typical crystal structure of Co(DIAFO)2(NCS)2 for these compounds was determined with orthorhombic, space group Pcan, a = 10.377(5) Å, b = 13.289(6) Å, c= 16.629(7) Å, V = 2293(2) Å3, D c = 1.563 g cm–3, F(000) = 1091.74, Z = 4, R = 0.043, R = 0.047. Steric effects are thought to be operative in both ligands studied, but are weaker than those of the typical bidentate diimine ligand bipy.Author to whom all correspondence should be directed.  相似文献   

10.
Addition of Cationic Lewis Acids [M′Ln]+ (M′Ln = Fe(CO)2Cp, Fe(CO)(PPh3)Cp, Ru(PPh3)2Cp, Re(CO)5, Pt(PPh3)2, W(CO)3Cp to the Anionic Thiocarbonyl Complexes [HB(pz)3(OC)2M(CS)] (M = Mo, W; pz = 3,5‐dimethylpyrazol‐1‐yl) Adducts from Organometallic Lewis Acids [Fe(CO)2Cp]+, [Fe(CO)(PPh3)Cp]+, [Ru(PPh3)2Cp]+, [Re(CO)5]+, [ Pt(PPh3)2]+, [W(CO)3Cp]+ and the anionic thiocarbonyl complexes [HB(pz)3(OC)2M(CS)] (M = Mo, W) have been prepared. Their spectroscopic data indicate that the addition of the cations occurs at the sulphur atom to give end‐to‐end thiocarbonyl bridged complexes [HB(pz)3(OC)2MCSM′Ln].  相似文献   

11.
Cs[Er10(C2)2]I18 and [Er10(C2)2]Br18: Two New Examples for Reduced Halides of the Lanthanides with Isolated [M10(C2)2] Clusters Cs[Er10(C2)2]I18 is obtained from the reaction of ErI3 with caesium and carbon in sealed tantalum containers at 700°C and [Er10(C2)2]Br18 through the metallothermic reduction of ErBr3 with rubidium in the presence of carbon at 750°C in sealed niobium containers. The crystal structures {Cs[Er10(C2)2]I18: triclinic, P1 ; a = 1 105.2(8) pm, b = 1 112.0(7) pm; c = 1 122.9(8) pm; α = 66.91(3)°, β = 87.14(3)°; γ = 60.80(3)°; Z = 1; R = 0.049, Rw = 0.043; [Er10(C2)2]Br18: monoclinic, P21/n, a = 971.8(6) pm, b = 1 623.4(9) pm, c = 1 163.8(6) pm, β = 104.00(6)°; Z = 2; R = 0.077, Rw = 0.057} contain isolated dimeric [Er10(C2)2] clusters. Due to the inclusion of C2 units, the octahedra are elongated in the direction of the pseudo C4 axis. The connecting edges of the two octahedra are exceptionally short (316.7 pm and 314.8 pm respectively). The dimeric units are connected via Xi?a and Xa?i (X = Br, I) bridges according to [Er10(C2)2XX]X. Cs+ is surrounded by a cuboctahedron of iodide ions in Cs[Er10(C2)2]I18.  相似文献   

12.
Summary Complexes of the types ML2X2 [M = cobalt(II) or nickel(II); L = hydrazine, ethylenediamine (en) or o-phenylenediamine (opd) and X = SCN or SeCN] and NiL2(NCS)2MCl2 [M = cadmium(II) or mercury(II)] have been prepared and characterised by elemental analysis, molar conductance, molecular weight determination, magnetic susceptibility, electronic and i.r. spectral measurements.  相似文献   

13.
Summary The seven-coordinate complexes [MI2(CO)3(NCMe)2] (M=Mo or W) react with two equivalents of L(L=py, 4Me-py, 3Cl-py or 3Br-py) or one equivalent of NN {NN=2,2-bipyridine(bipy), 1,10-phenanthroline(phen), 5,6-dimethyl-1, 10-phenanthroline (5,6-Me2-1, 10-phen), 5-Nitro-1, 10-phenanthroline (5-NO2-1, 10-phen) and C6H4(o-NH2)2 (o-diam) (for M=Mo only)} in CH2Cl2 at room temperature to give the substituted products [MI2(CO)3L2] or [MI2(CO)3(NN)] (1–17) in high yield. The compounds [MI2(CO)3(NCMe)2] react with two equivalents of NN (for M=W, NN=bipy; for M=Mo, NN=phen) to give the dicationic salts [M(CO)3(NN)2]2I(18–19). The compounds [MI2(CO)3(NCMe)2] (M=Mo or W) react with two equivalents of 5,6-Me2-1, 10-phen to yield the monocationic dicarbonyl compounds [MI(CO)2(5,6-Me2-phen)2]I (20 and21). The dicationic mixed ligand complexes [M(CO)3(bipy)(5,6-Me2-phen)]2I (22 and23) are prepared by reacting [MI2(CO)3(NCMe)2] with one equivalent of bipy, followed by anin situ reaction with 5,6-Me2-1, 10-phen to afford the products22 and23. The complexes (1–23) described in this paper have been characterised by elemental analysis (C, H and N), i.r. spectroscopy and, in selected cases,1Hn.m.r. spectroscopy. Magnetic susceptibility measurements show the compounds to be diamagnetic.  相似文献   

14.
Heteronuclear Metal Atom Clusters of the Types X4?n[SnM(CO)4P(C6H5)3]n and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 by Reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (X = Halogene; M = Mn, Re; n = 2, 3) The compounds of the both types X4?n[SnM(CO)4P(C6H5)3]n (n = 3; M = Mn; X = F, Cl, Br, I. n = 2: M = Mn, Re; X = Cl, Br, I) and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 (M = Mn; X = Cl, I. M = Re; X = Cl, Br, I) are prepared by reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (M = Mn, Re). Their IR frequencies are assigned. In Re2(CO)8[μ-Sn(Cl)Re(CO)4P(C6H5)3]2 the central molecule fragment contains a planar Re2Sn2 rhombus with a transannular Re? Re bond of 316.0(2) pm. Each of the SnIV atoms is connected with the terminal ligands Cl and Re(CO)4P(C6H5)3. These ligands are in transposition with respect to the Re2Sn2 ring. The mean values for the remaining bond distances (pm) are: Sn? Re = 274.0(3); Sn? Cl = 243(1), Re? C = 176(5), Re? P = 242.4(9), C? O = 123(5). The factors with an influence on the geometrical shape of such M2Sn2 rings (M = transition metal) are discussed.  相似文献   

15.
The reaction of the nitrosyl carbonyl complexes [Fe(NO)2(CO)2] and [Co(NO)(CO)3] with the decacarbonyldimetalates [M2(CO)10]2– (M = Cr and Mo) in THF as the solvent at room temperature was investigated. Thereby a substitution of one nitrosyl ligand towards carbon monoxide was observed in each case. Both reactions afforded the known metalate complexes [Fe(NO)(CO)3] and [Co(CO)4], respectively. These species were isolated as their corresponding PPN salts [PPN+ = bis(triphenylphosphane)iminium cation] in nearly quantitative yields. The products were unambiguously identified by their IR spectroscopic and elemental analytic data as well as by their characteristic colors and melting points.  相似文献   

16.
Three polyoxomolybdate compounds, namely {[MII(HL)2]2(Mo8O26)} n (M = Co (1), Ni (2), Zn (3)) (HL, 3-(2-pyridyl)pyrazole), were designed and synthesized under the hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, and TGA. Single-crystal X-ray diffraction analysis results reveal that compounds 13 own the isostructural chain structure consisting of the β-[Mo8O26]4? anions, which are linked by M(HL) 2 2+ units via the terminal oxygen atoms. TGA curves show that the organic ligands separate from the related compounds above ca. 673 K.  相似文献   

17.
Summary Reactions of ruthenium carbonyl complexes of the type [RuX2(CO)(Ph2RAs)3] (X=Cl or Br; R=Me or Et) with 2,2-bipyridyl (bipy) and 1,10-phenanthroline (phen) in alcohol produce orange red cationic products of the formula [RuX(CO)(N-N)(Ph2RAs)2]ClO4 (N-N=bipy or phen). Likewise, the hydridocarbonyls of ruthenium and osmium of the type [MHX(CO)(Ph2RAs)3] (M=Ru or Os) react with bipy and phen to yield yellow cationic complexes of the composition [(MH(CO)(N-N)(Ph2RAs)2]ClO4. Structures have been assigned to all the complexes on the basis of i.r. and1 H n.m.r. spectral data.  相似文献   

18.
The reactions of half-sandwich diselenolate Mo and W complexes Cp#M(NO)(SePh)2 (M = Mo; Cp# = Cp (1a), MeCp (1b); M = W; Cp# = Cp (1c)) with (Norb)Mo(CO)4, Ni(COD)2 and Fe(CO)5 have been investigated. Treatment of (1a), (1b) and (1c) with (Norb)Mo(CO)4 in PhMe gave the bimetallic complexes: CpMo(NO)(-SePh)2Mo(CO)4 (2a), MeCpMo(NO)(-SePh)2Mo(CO)4 (2b) and CpW(NO)(-SePh)2Mo(CO)4 (2c) in moderate yields. Irradiation of (1a) and (1c) in the presence of Fe(CO)5 gave heterobimetallic complexes CpMo(CO)(-SePh)2Fe(CO)3 (3a) and CpW(NO)(-SePh)2Fe(CO)3 (3c). Ni(COD)2 reacts with two equivalents of (1a), (1b) and (1c) to give [CpMo(NO)(-SePh)2]2Ni (4a), [MeCpMo(NO)(-SePh)2]2Ni (4b) and [CpW(NO)(-SePh)2]2Ni (4c) in good yields. The new heterobimetallic complexes were characterized by i.r., 1H-n.m.r., 13C-n.m.r. and EI-MS spectroscopy.  相似文献   

19.
Preparation of Germanium-Manganese-, Germanium-Rhenium- and Tin-Rhenium-Clusters of the Type M2(CO)8[μ-EXM(CO)5]2 (M = Mn, E = Ge, X = Br, I; M = Re, E = Ge or Sn, X = I or Cl, Br, I) The clusters Re2(CO)8[μ-SnXRe(CO)5]2 are prepared by reaction of Re2(CO)10 and SnX2 in a Schlenk-tube under release of pressure (X = Cl, Br, I) or in a sealed glass tube (X = Br, I). As central structural unit a four-membered Re2Sn2 ring has to be assumed. This unit can be opened again by reaction with CO under pressure. X2Sn[Re(CO)5]2, which is also formed during the preparation of the clusters in dependance of the CO-pressure, indicates insertion of SnX2 into the Re—Re bond to be the primary step. The corresponding clusters M2(CO)8[μ-GeXM(CO)5]2 (M = Mn, X = Br, I; M = Re, X = I) are prepared by reaction of GeI2 and M2(CO)10 or of I2Ge[Mn(CO)5]2 and Mn2(CO)10 or of Br3GeMn(CO)5 and BrMn(CO)5. Ir frequencies of the new clusters are assigned.  相似文献   

20.
Regioselective Ring Opening Reactions of Unifold Unsaturated Triangular Cluster Complexes [M2Rh(μ‐PR2)(μ‐CO)2(CO)8] (M2 = Re2, Mn2; R = Cy, Ph; M2 = MnRe, R = Ph) with Diphosphanes Equimolar amounts of the triangular title compounds and chelates of the type (Ph2P)2Z (Z = CH2, DPPM ; C=CH2, EPP ) react in thf solution at –40 to –20 °C under release of the labile terminal carbonyl ligand attached to the rhodium atom in good yields (70–90%) to ring‐opened unifold unsaturated complexes [MRh(μ‐PR2)(CO)4M(DPPM bzw. EPP)(μ‐CO)2(CO)3] (DPPM: M2 = Re2, R = Cy 1 , Ph 2 ; Mn2, Cy 5 , Ph 6 ; MnRe, Cy 7 . EPP: M2 = Re2, R = Cy 8 ; Mn2, Cy 10 ). Complexes 1 , 2 and 8 react subsequently under minor uptake of carbon monoxide and formation of the valence saturated complexes [ReRh(μ‐PR2)(CO)4M(DPPM bzw. EPP) (CO)6] (DPPM: R = Cy 3 , Ph 4 . EPP: R = Cy 9 ). Separate experiments ascertained that the regioselective ring opening at the M–M‐edge of the title compounds is limited to reactions with diphosphanes chelates with only one chain member and that the preparation of the unsaturated complexes demands relatively good donor ability of both P atoms. As examples for both types of compounds the molecular structures of 8 and 3 have been determined from single crystal X‐ray structure analysis. Additionally all new compounds are identified by means of ν(CO)IR, 1H‐ and 31P‐NMR data. This includes complexes with a modified chain member in 1 and 5 which, after deprotonation reaction to carbanionic intermediates, could be trapped with [PPh3Au]+ cations as rac‐[MRh(μ‐PR2)(CO)4M((Ph2P)2CHAuPPh3)(μ‐CO)2(CO)3] (M2 = Re 17 , Mn 18 ) and products rac‐[MRh(μ‐PR2)(CO)4M((Ph2P)2CHCH2R)(μ‐CO)2(CO)3] (M2 = Re, R = Ph 19 , n‐Bu 21 , Me 23 ; Mn, Ph 20 , n‐Bu 22 , Me 24 ) which result from Michael‐type addition reactions of 8 or 10 with strong nucleophiles LiR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号