首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report experimental measurements on the rheology of a dry granular material under a weak level of vibration generated by sound injection. First, we measure the drag force exerted on a wire moving in the bulk. We show that when the driving vibration energy is increased, the effective rheology changes drastically: going from a non-linear dynamical friction behavior --weakly increasing with the velocity-- up to a linear force-velocity regime. We present a simple heuristic model to account for the vanishing of the stress dynamical threshold at a finite vibration intensity and the onset of a linear force-velocity behavior. Second, we measure the drag force on spherical intruders when the dragging velocity, the vibration energy, and the diameters are varied. We evidence a so-called “geometrical hardening" effect for smaller-size intruders and a logarithmic hardening effect for the velocity dependence. We show that this last effect is only weakly dependent on the vibration intensity.  相似文献   

2.
Numerous publications on the modeling of disk brake squeal can be found in the literature. Recent publications describe the onset of disk brake squeal as an instability of the trivial solution resulting from the non-conservative friction forces even for a constant friction coefficient. Therefore, a minimal model of disk brake squeal must contain at least two degrees of freedom. A literature review of minimal models shows that there is still a lack of a minimal model describing the basic behavior of disk brake squeal which can easily be associated to an automotive disk brake.Therefore, a new minimal model of a disk brake is introduced here, showing an obvious relation to the technical system. In this model, the vibration of the disk is taken into account, as it plays a dominant role in brake squeal. The model is analyzed with respect to its stability behavior, and consequences in using it in the optimization of disk brake systems are discussed.  相似文献   

3.
CHAOTIC DYNAMICS OF REPEATED IMPACTS IN VIBRATORY BOWL FEEDERS   总被引:2,自引:0,他引:2  
The vibratory bowl feeder is widely used to convey small engineering parts, and can be considered as a typical non-linear dynamic system experiencing repeated impacts with friction. This paper presents a simplified model and analysis for the dynamic behavior of a single part on the vibrating track of the bowl feeder. While the previous studies are restricted to the sliding regime, the presented analysis is focused on the hopping regime where the high conveying rate is available. The periodic and chaotic regions in the hopping regime are identified through numerical simulation and experimental analysis. It is verified experimentally that the conveying rate in the chaotic region is roughly independent of variations of external parameters. The dynamic effects from the variation of several physical parameters are examined and the important features for the effective design of the vibratory feeder are presented. This research holds much potential for leverage over design problems of a wide range of mechanisms and tools with repeated collisions.  相似文献   

4.
A semiclassical approach to the low-temperature real-time dynamics of generic one-dimensional, gapped models in the sine-Gordon model universality class is developed. Asymptotically exact universal results for correlation functions are obtained in the temperature regime T < Delta, where Delta is the energy gap.  相似文献   

5.
We propose a friction model which incorporates interfacial elasticity and whose steady state sliding relation is characterized by a generic nonmonotonic behavior, including both velocity weakening and strengthening branches. In 1D and upon the application of sideway loading, we demonstrate the existence of transient cracklike fronts whose velocity is independent of sound speed, which we propose to be analogous to the recently discovered slow interfacial rupture fronts. Most importantly, the properties of these transient inhomogeneously loaded fronts are determined by steady state front solutions at the minimum of the sliding friction law, implying the existence of a new velocity scale and a "forbidden gap" of rupture velocities. We highlight the role played by interfacial elasticity and supplement our analysis with 2D scaling arguments.  相似文献   

6.
The numerical simulation of quantum many-body dynamics is typically limited by the linear growth of entanglement with time. Recently numerical studies have shown that for 1D Bethe-integrable models the simulation of local operators in the Heisenberg picture can be efficient. Using the spin-1/2 XX chain as generic example of an integrable model that can be mapped to free fermions, we provide a simple explanation for this. We show furthermore that the same reduction of complexity applies to operators that have a high-temperature autocorrelation function which decays slower than exponential, i.e., with a power law. Thus efficient simulability may already be implied by a single conservation law as we will illustrate numerically for the spin-1 XXZ model.  相似文献   

7.
Melting of an ultrathin lubricant film during friction between two atomically smooth surfaces is investigated using the Lorentz model for approximating the viscoelastic medium. Second-order differential equations describing damped harmonic oscillations are derived for three boundary relations between the shear stresses, strain, and temperature relaxation times. In all cases, phase portraits and time dependences of stresses are constructed. It is found that under the action of a random force (additive uncorrelated noise), an undamped oscillation mode corresponding to a periodic intermittent regime sets in, which conforms to a periodic stick-slip regime of friction that is mainly responsible for fracture of rubbing parts. The conditions in which the periodic intermittent regime is manifested most clearly are determined, as well as parameters for which this regime does not set in the entire range of the friction surface temperature.  相似文献   

8.
Oscillatory behavior in cosmological models is investigated, motivated, in part, by the apparent periodic distribution of galaxies in deep narrow-cone red-shift surveys. In particular, oscillatory behavior in two cosmological models is studied; a qualitative analysis is performed and approximate solutions are found for a soft inflationary model and for a Friedmann-Robertson-Walker model containing a perfect fluid and a scalar field source. These two models are conformally equivalent to particular models arising from a large class of scalar-tensor theories. It is then argued that such oscillatory behavior is a generic property of scalartensor theories of gravity.  相似文献   

9.
A modified discrete element method(DEM)with rolling effect taken into consideration is developed to examine macroscopic behavior of granular materials in this study.Dimensional analysis is firstly performed to establish the relationship between macroscopic mechanical behavior,mesoscale contact parameters at particle level and external loading rate.It is found that only four dimensionless parameters may govern the macroscopic mechanical behavior in bulk.The numerical triaxial apparatus was used to study their influence on the mechanical behavior of granular materials.The parametric study indicates that Poisson’s ratio only varies with stiffness ratio,while Young’s modulus is proportional to contact modulus and grows with stiffness ratio,both of which agree with the micromechanical model.The peak friction angle is dependent on both inter-particle friction angle and rolling resistance.The dilatancy angle relies on inter-particle friction angle if rolling stiffness coefficient is sufficiently large.Finally,we have recommended a calibration procedure for cohesionless soil,which was at once applied to the simulation of Chende sand using a series of triaxial compression tests.The responses of DEM model are shown in quantitative agreement with experiments.In addition,stress-strain response of triaxial extension was also obtained by numerical triaxial extension tests.  相似文献   

10.

The inner structure, and the physical behaviour of turbulent premixed flames are usually described, and classified by means of the regime diagram introduced by Borghi and Peters. Thereby properties related to both the flame and the (turbulent) flow are considered. In this work a diagram valid for all physical regimes, comprising suitable requirements for laminar simulations, direct numerical simulation (DNS), large-eddy simulation (LES), and Reynolds averaging based numerical simulation (RANS) is proposed. In particular the diagram describes essential situations within the validity limits of the “Borghi, Peters diagram” which physical phenomena are resolved by the simulation, and which have to be modelled. This information is used for systematic classification of various models by suggesting specific models that are appropriate depending on the regime and numerical resolution, and may provide guidance for numerical simulation methods and model development in turbulent premixed combustion. This might help users as a guideline in choosing appropriate models for a given device, and numerical effort available. The regime diagram suggested by Pitsch and Duchamp de Lageneste, which includes DNS and LES by explicitely accounting for the numerical related variable filterwidth, emerges here as one of the special two-dimensional cases possible. In contrast to the generalized regime diagram, their diagram does not include laminar simulations, and RANS based considerations, while transition between wrinkled and corrugated flamelets is not clearly established.  相似文献   

11.
In this Letter we investigate the nature of generic cosmological singularities using the framework developed by Uggla et al. We study the past asymptotic dynamics of general vacuum G2 cosmologies, which are expected to capture the singular behavior of generic cosmologies with no symmetries at all. Our results indicate that asymptotic silence holds, i.e., particle horizons along all time lines shrink to zero for generic solutions. Moreover, we provide evidence that spatial derivatives become dynamically insignificant along generic time lines, and that the evolution into the past along such time lines is governed by an asymptotic dynamical system which is associated with an invariant set-the silent boundary. We identify an attracting subset on the silent boundary that organizes the oscillatory dynamics of generic time lines in the singular regime. Finally, we discuss the dynamics associated with recurring spike formation.  相似文献   

12.
We summarize in this article an extensive experimental and theoretical effort carried out to understand the behavior of a single ball when rolling down a bumpy surface. This may appear to be a simple problem but in fact is one that displays a rich variety of different behaviors which allow us to understand better dissipative systems such as granular media. Studies performed previously have shown that the motion of the single ball on the rough surface can be characterized by three different dynamic regimes according to the different values of the two control parameters, the inclination angle theta and the ratio Phi=R/r, where R is the radius of the rolling ball and r the radius of the glass beads which make up the rough surface. The three regimes are a decelerated regime A, a stationary regime B, characterized by a constant average velocity and a jumping regime C. This result was found to be independent of the composition of the rolling ball and the rough surface. It has been demonstrated that regime B is characterized by a viscous-like friction force that appears for specific parameter values. This friction force can be explained by a model whose central ingredient is the geometry of the surface. The trajectory of the ball in regime B can be pictured as a driven random walk motion where the fluctuations of the local velocities are due to collisions of the moving sphere and the surface grains. A detailed analysis of diffusive properties of the motion is discussed. (c) 1999 American Institute of Physics.  相似文献   

13.
We investigate the quasistatic mechanical response of soils under cyclic loading using a discrete model of randomly generated convex polygons. This response exhibits a sequence of regimes, each one characterized by a linear accumulation of plastic deformation with the number of cycles. At the grain level, a quasiperiodic ratchetlike behavior is observed at the contacts, which excludes the existence of an elastic regime. The study of this slow dynamics allows exploration of the role of friction in the permanent deformation of unbound granular materials subjected to cyclic loading.  相似文献   

14.
15.
We solve the periodic Anderson model in the Mott-Hubbard regime, using dynamical mean field theory. Upon electron doping of the Mott insulator, a metal-insulator transition occurs which is qualitatively similar to that of the single band Hubbard model, namely, with a divergent effective mass and a first order character at finite temperatures. Surprisingly, upon hole doping, the metal-insulator transition is not first order and does not show a divergent mass. Thus, the transition scenario of the single band Hubbard model is not generic for the periodic Anderson model, even in the Mott-Hubbard regime.  相似文献   

16.
Based on numerical solution of the Boltzmann equation by direct statistic simulation, the Couette flow with heat transfer is studied in a broad range of ratios of plate temperatures and Mach numbers of a moving plate. Flow regime classification by the form of the dependences of the energy flux and friction stress on the Knudsen number Kn is proposed. These dependences can be simultaneously monotonic and nonmonotonic and have maxima. Situations are possible in which the dependence of the energy flux transferred to a plate on Kn has a minimum, while the dependence of the friction stress is monotonic or even has a maximum. Also, regimes exist in which the dependence of the energy flux on Kn has a maximum, while the dependence of the friction stress is monotonic, and vice versa.  相似文献   

17.
We introduce a model for friction in a system of two rigid plates connected by bonds (springs) and experiencing an external drive. The macroscopic frictional properties of the system are shown to be directly related to the rupture and formation dynamics of the microscopic bonds. Different regimes of motion are characterized by different rates of rupture and formation relative to the driving velocity. In particular, the stick-slip regime is shown to correspond to a cooperative rupture of the bonds. Moreover, the notion of static friction is shown to be dependent on the experimental conditions and time scales. The overall behavior can be described in terms of two Deborah numbers.  相似文献   

18.
19.
G. Malescio 《Physica A》2007,383(2):643-650
We present a model describing a generic process in which a finite resource is partitioned and distributed among agents. Through numerical simulation we show that the model considered is able to originate, within a unifying approach, a variety of broad distributions and provides an interpretation of empirical properties of distributions observed in the real world. In particular it allows to relate the exponent of the power-law part of the distributions to resource abundance and accessibility, while the left-end exponential behavior, observed in many distributions, is related to the presence of dissipative effects.  相似文献   

20.
A dynamic rheological model for thin-film lubrication   总被引:1,自引:0,他引:1       下载免费PDF全文
张向军  黄颖  郭岩宝  田煜  孟永钢 《中国物理 B》2013,22(1):16202-016202
In this study, the effects of the non-Newtonian rheological properties of the lubricant in a thin-film lubrication regime between smooth surfaces were investigated. The thin-film lubrication regime typically appears in Stribeck curves with a clearly observable minimum coefficient of friction (COF) and a low-COF region, which is desired for its lower energy dissipation. A dynamic rheology of the lubricant from the hydrodynamic lubrication regime to the thin-film lubrication regime was proposed based on the convected Maxwell constitutive equation. This rheology model includes the increased relaxation time and the yield stress of the confined lubricant thin film, as well as their dependences on the lubricant film thickness. The Deborah number (De number) was adopted to describe the liquid-solid transition of the confined lubricant thin film under shearing. Then a series of Stribeck curves were calculated based on Tichy's extended lubrication equations with a perturbation of the De number. The results show that the minimum COF points in the Stribeck curve correspond to a critical De number of 1.0, indicating a liquid-to-solid transition of the confined lubricant film. Furthermore, the two proposed parameters in the dynamic rheological model, namely negative slipping length b (indicating the lubricant interfacial effect) and the characteristic relaxation time λ 0 , were found to determine the minimum COF and the width of the low-COF region, both of which were required to optimize the shape of the Stribeck curve. The developed dynamic rheological model interprets the correlation between the rheological and interfacial properties of lubricant and its lubrication behavior in the thin-film regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号