共查询到20条相似文献,搜索用时 31 毫秒
1.
Acidizing technology has been widely applied when developing naturally fractured–vuggy reservoirs. So testing and evaluating acidizing wells’ pressure behavior become necessary for further improving the wells’ performance. Analyzing transient pressure data can estimate some key reservoir parameters. Generally speaking, carbonate minerals are usually composed of dolomite and calcite which are easy to be dissolved by hydrochloric acid which is often used to react with the rock to create a high conductivity channel, namely wormhole. Pressure transient behavior in fractured–vuggy reservoirs has been studied for many years; however, the models of acidizing wells with wormholes were not reported in previous studies. This article presented an analytical model for wormholes in naturally fractured–vuggy carbonate reservoirs, and wormholes solutions were obtained through point sink integral method. The results were validated accurately by comparing with previous results and numerical simulation. Then in this paper, type curves were established to recognize the flow characteristics, and flow was divided into six flow regimes comprehensively. The calculative results showed that the characteristics of type curves were influenced by inter-porosity flow factor, wormhole number, fluids capacitance coefficient. We also showed that the pressure behavior was affected by the angles between wormholes, and the pressure depletion increased as the angle decreased, because the wormholes were closer, their interaction became stronger. At the end, a reservoir example was showed to demonstrate the methodology of new type curve analysis. 相似文献
2.
Fluid flow and solute transport in a 3D rough-walled fracture–matrix system were simulated by directly solving the Navier–Stokes equations for fracture flow and solving the transport equation for the whole domain of fracture and matrix with considering matrix diffusion. The rough-walled fracture–matrix model was built from laser-scanned surface tomography of a real rock sample, by considering realistic features of surfaces roughness and asperity contacts. The numerical modeling results were compared with both analytical solutions based on simplified fracture surface geometry and numerical results by particle tracking based on the Reynolds equation. The aim is to investigate impacts of surface roughness on solute transport in natural fracture–matrix systems and to quantify the uncertainties in application of simplified models. The results show that fracture surface roughness significantly increases heterogeneity of velocity field in the rough-walled fractures, which consequently cause complex transport behavior, especially the dispersive distributions of solute concentration in the fracture and complex concentration profiles in the matrix. Such complex transport behaviors caused by surface roughness are important sources of uncertainty that needs to be considered for modeling of solute transport processes in fractured rocks. The presented direct numerical simulations of fluid flow and solute transport serve as efficient numerical experiments that provide reliable results for the analysis of effective transmissivity as well as effective dispersion coefficient in rough-walled fracture–matrix systems. Such analysis is helpful in model verifications, uncertainty quantifications and design of laboratorial experiments. 相似文献
3.
4.
We examine a class of hydrocarbon reservoirs whose thermodynamic state remains close to the critical point during the all period of reservoir exploitation. Such a situation is typical for the so-called gas–condensate systems, in which the liquid phase is formed from gas when pressure decreases. Due to proximity to critical point, the mixture contains many components which are neutral with respect to the phase state. This determines a low thermodynamic degree of freedom of the system. As the results, the mathematical flow model allows a significant reduction in the number of conservation equations, whatever the number of chemical components. In the vicinity of a well, the system may be reduced to one transport equation for saturation. This nonlinear model yields exact analytical solutions when the flow is self-similar. In more general case of flow, we develop partially linearized solutions which are shown to be sufficiently exact. The spectrum of examined cases covers the flow in a medium with a sharp heterogeneity and a sharp variation in the flow rate. A significant relative gas flow past liquid gives rise to a convective mass exchange phenomenon which appears highly different from that observed in static. In the case of a medium discontinuity, the convective mass exchange gives rise to a phenomenon of condensate saturation billow formation. A sharp variation in the flow rate leads to a hysteretic behavior of the saturation field. 相似文献
5.
After dense nonaqueous phase liquids (DNAPLs) travel downward through the subsurface, they typically come to rest on fractured bedrock or tight clay layers, which become additional pathways for DNAPL migration. DNAPLs trapped in fractures are continuous sources of groundwater contamination. To decide whether they can be left in place to dissolve or volatilize, or must be removed with active treatment, the movement of DNAPLs in fractured media must be understood at a fundamental level. This work presents numerical simulations of the movements of DNAPLs in naturally fractured media under twophase flow conditions. The flow is modeled using a multiphase network flow model, used to develop predictive capabilities for DNAPL flow in fractures. Capillary pressure–saturation–relative permeability curves are developed for twophase flow in fractures. Comparisons are made between the behavior in crystalline, almost impermeable rocks (e.g. granite) and more permeable rocks like sandstone, to understand the effects of the rock matrix on the displacement of the DNAPLs in the fracture. For capillarydominated flow, displacements occur as a sequence of jumps, as the invading phase overcomes the capillary pressure at downgradient apertures. Preferential channels for the displacement of nonaqueous phase are formed due to high fracture aperture in some regions. 相似文献
6.
Interphase mass transfer in porous media takes place across fluid–fluid interfaces. At the field scale, this is almost always a kinetic process and its rate is highly dependent on the amount of fluid–fluid interfacial area. Having no means to determine the interfacial area, modelers usually either neglect kinetics of mass transfer and assume local equilibrium between phases or they estimate interfacial area using lumped parameter approaches (in DNAPL pool dissolution) or a dual domain approach (for air sparging). However, none of these approaches include a physical determination of interfacial area or accounts for its role for interphase mass transfer. In this work, we propose a new formulation of two-phase flow with interphase mass transfer, which is based on thermodynamic principles. This approach comprises a mass balance for each component in each phase and a mass balance for specific interfacial area. The system is closed by a relationship among capillary pressure, interfacial area, and saturation. We compare our approach to an equilibrium model by showing simulation results for an air–water system. We show that the new approach is capable of modeling kinetic interphase mass exchange for a two-phase system and that mass transfer correlates with the specific interfacial area. By non-dimensionalization of the equations and variation of Peclet and Damköhler number, we make statements about when kinetic interphase mass transfer has to be taken into account by using the new physically based kinetic approach and when the equilibrium model is a reasonable simplification. 相似文献
7.
8.
Ying-Lan Jia Xiang-Yu Fan Ren-Shi Nie Quan-Hua Huang Yong-Lu Jia 《Transport in Porous Media》2013,97(2):253-279
Porous–vuggy carbonate reservoirs consist of both matrix and vug systems. This paper represents the first study of flow issues within a porous–vuggy carbonate reservoir that does not introduce a fracture system. The physical properties of matrix and vug systems are quite different in that vugs are dispersed throughout a reservoir. Assuming spherical vugs, symmetrically distributed pressure, centrifugal flow of fluids and considering media that is directly connected with wellbore as the matrix system, we established and solved a model of well testing and rate decline analysis for porous–vuggy carbonate reservoirs, which consists of a dual porosity flow behavior. Standard log–log type curves are drawn up by numerical simulation and the characteristics of type curves are analyzed thoroughly. Numerical simulations showed that concave type curves are dominated by interporosity flow factor, external boundary conditions, and are the typical response of porous–vuggy carbonate reservoirs. Field data interpretation from Tahe oilfield of China were successfully made and some useful reservoir parameters (e.g., permeability and interporosity flow factor) are obtained from well test interpretation. 相似文献
9.
10.
Douglas Jim Frías Diego Henderson Nélio Pereira Felipe 《Transport in Porous Media》2003,50(3):307-342
Over the past two decades most discussions of the simulation of miscible displacement in porous media were related to incompressible flow problems; recently, however, attention has shifted to compressible problems. The first goal of this paper is the derivation of the governing equations (mathematical models) for a hierarchy of miscible isothermal displacements in porous media, starting from a very general single-phase, multicomponent, compressible flow problem; these models are then compared with previously proposed models. Next, we formulate an extension of the modified method of characteristics with adjusted advection to treat the transport and dispersion of the components of the miscible fluid; the fluid displacement must be coupled in a two-stage operator-splitting procedure with a pressure equation to define the Darcy velocity field required for transport and dispersion, with the outer stage incorporating an implicit solution of the nonlinear parabolic pressure equation and an inner stage for transport and diffussion in which the mass fraction equations are solved sequentially by first applying a globally conservative Eulerian–Lagrangian scheme to solve for transport, followed by a standard implicit procedure for including the diffusive effects. The third objective is a careful investigation of the underlying physics in compressible displacements in porous media through several high resolution numerical experiments. We consider real binary gas mixtures, with realistic thermodynamic correlations, in homogeneous and heterogeneous formations. 相似文献
11.
U. K. Zhapbasbaev E. P. Makashev 《Journal of Applied Mechanics and Technical Physics》2001,42(1):21-27
Results of numerical and theoretical studies of supersonic diffusive combustion of a system of plane hydrogen jets in a supersonic air flow are described. It is shown that large–scale vortex structures appear in the mixing zone of the system of hydrogen jets and the cocurrent flow. These vortex structures affect the mechanism of turbulent exchange between the fuel and the oxidizer. 相似文献
12.
Elena Bonetti Pierluigi Colli Mauro Fabrizio Gianni Gilardi 《Archive for Rational Mechanics and Analysis》2016,219(1):203-254
We consider a strongly nonlinear PDE system describing solid–solid phase transitions in shape memory alloys. The system accounts for the evolution of an order parameter χ (related to different symmetries of the crystal lattice in the phase configurations), of the stress (and the displacement u), and of the absolute temperature ?. The resulting equations present several technical difficulties to be tackled; in particular, we emphasize the presence of nonlinear coupling terms, higher order dissipative contributions, possibly multivalued operators. As for the evolution of temperature, a highly nonlinear parabolic equation has to be solved for a right hand side that is controlled only in L 1. We prove the existence of a solution for a regularized version by use of a time discretization technique. Then, we perform suitable a priori estimates which allow us pass to the limit and find a weak global-in-time solution to the system. 相似文献
13.
Endo Kokubun M. A. Radu F. A. Keilegavlen E. Kumar K. Spildo K. 《Transport in Porous Media》2019,129(2):501-520
Transport in Porous Media - 3D printing with powders offers the most analogous method to the natural way in which clastic reservoir rocks are formed, resulting in pore network textures and... 相似文献
14.
Yu. Ya. Trifonov 《Journal of Applied Mechanics and Technical Physics》2018,59(1):52-60
Linear stability of liquid and gas counterflows in an inclined channel is considered. The full Navier–Stokes equations for both phases are linearized, and the dynamics of periodic disturbances is determined by means of solving a spectral problem in wide ranges of Reynolds numbers for the liquid and vapor velocity. Two unstable modes are found in the examined ranges: surface mode (corresponding to the Kapitsa waves at small velocities of the gas) and shear mode in the gas phase. The wave length and the phase velocity of neutral disturbances of both modes are calculated as functions of the Reynolds number for the liquid. It is shown that these dependences for the surface mode are significantly affected by the gas velocity. 相似文献
15.
The Forchheimer equations for non-slow flow in a saturated porous medium are studied. We prove the convergence results for
both the first and the second Forchheimer coefficients. 相似文献
16.
Yacine Debbabi Matthew D. Jackson Gary J. Hampson Pablo Salinas 《Transport in Porous Media》2018,124(1):263-287
Motivated by geological carbon storage and hydrocarbon recovery, the effect of buoyancy and viscous forces on the displacement of one fluid by a second immiscible fluid, along parallel and dipping layers of contrasting permeability, is characterized using five independent dimensionless numbers and a dimensionless storage or recovery efficiency. Application of simple dimensionless models shows that increased longitudinal buoyancy effects increase storage efficiency by reducing the distance between the leading edges of the injected phase in each layer and decreasing the residual displaced phase saturation behind the leading edge of the displacing phase. Increased transverse buoyancy crossflow increases storage efficiency if it competes with permeability layering effects, but reduces storage efficiency otherwise. When both longitudinal and transverse buoyancy effects are varied simultaneously, a purely geometrical dip angle group defines whether changes in storage efficiency are dominated by changes in the longitudinal or transverse buoyancy effects. In the limit of buoyancy-segregated flow, we report an equivalent, unidimensional flow model which allows rapid prediction of storage efficiency. The model presented accounts for both dip and layering, thereby generalizing earlier work which accounted for each of these but not both together. We suggest that the predicted storage efficiency can be used to compare and rank geostatistical realizations, and complements earlier heterogeneity measures which are applicable in the viscous limit. 相似文献
17.
Somenath Ganguly 《Transport in Porous Media》2010,84(1):201-218
During waterflooding of a fractured formation, water may channel through the fracture or interconnected network of fractures, leaving a large portion of oil bearing rock unswept. One remedial practice is injection of a gelling solution into the fracture. Such placement of a gelling mixture is associated with leak-off from the fracture face into the adjoining matrix. Design of a gel treatment needs understanding of the flow of gelling mixture in and around the fracture. This flow is addressed here for Cr(III)–partially hydrolyzed polyacrylamide formulation through experiments and conceptual model. A fractured slab was used to develop a lab-model, where the flow along the fracture and simultaneous leak-off into the matrix can be controlled. Also, the fracture and matrix properties had to be evaluated individually for a meaningful analysis of the displacement of gelling solution. During this displacement, the gelling fluid leaked off from the fracture into the matrix as a front, resulting in a decreasing velocity (and pressure gradient) along the fracture. With pressure in the fracture held constant with time, the leak-off rate decreased as the viscous front progressed into the matrix. The drop in leak-off rate was rapid during the initial phase of displacement. A simple model, based on the injection of a viscous solution into the dual continua, could explain the displacement of Cr(III)–polyacrylamide gelling mixture through the fractured slab. This study rules out any major complication from the immature gelling fluid, e.g., build-up of cake layer on the fracture face. The model, due to its simplicity may become useful for quick sizing of gel treatment, and any regression-based evaluation of fluid properties in a fracture for other applications. 相似文献
18.
N. I. Grigor'eva V. E. Nakoryakov 《Journal of Applied Mechanics and Technical Physics》2001,42(1):103-110
Results of modeling of heat– and mass–transfer processes proceeding simultaneously in vapor absorption on tube banks are described. Theoretical models of film absorption are presented. The calculation results are compared with experimental data on steam absorption by the lithium bromide solution on a vertical tube. In calculation of transfer processes in absorption on horizontal tubes, the possibility of using solutions for the initial thermal length and for the section with a linear temperature profile is substantiated. The calculations are illustrated by the example of a multipass absorber. 相似文献
19.
Yuning Liu Takéo Takahashi Marius Tucsnak 《Journal of Mathematical Fluid Mechanics》2012,14(1):177-195
In this paper we study a mathematical model for the dynamics of vesicle membranes in a 3D incompressible viscous fluid. The
system is in the Eulerian formulation, involving the coupling of the incompressible Navier–Stokes system with a phase field
equation. This equation models the vesicle deformations under external flow fields. We prove the local in time existence and
uniqueness of strong solutions. Moreover, we show that, given T > 0, for initial data which are small (in terms of T), these solutions are defined on [0, T] (almost global existence). 相似文献
20.
Peter Bella 《Journal of Mathematical Fluid Mechanics》2012,14(2):279-294
Ducomet et?al. (Discrete Contin Dyn Syst 11(1): 113?C130, 2004) showed the existence of global weak solutions to the Navier?CStokes?CPoisson system. We study the global behavior of such a solution. This is done by (1) proving uniqueness of a solution to the stationary system; (2) by showing convergence of a weak solution to the stationary solution. In (1) we consider only the case with repulsion. We prove our result in the case of a bounded domain with smooth boundary in ${\mathbb{R}^3}$ and also in the case of the whole space ${\mathbb{R}^3}$ . 相似文献