首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cover-Incomparability Graphs of Posets   总被引:1,自引:1,他引:0  
Cover-incomparability graphs (C-I graphs, for short) are introduced, whose edge-set is the union of edge-sets of the incomparability and the cover graph of a poset. Posets whose C-I graphs are chordal (resp. distance-hereditary, Ptolemaic) are characterized in terms of forbidden isometric subposets, and a general approach for studying C-I graphs is proposed. Several open problems are also stated.  相似文献   

2.
In this paper we show that the recognition problem for C-I graphs of posets is NP-complete. On the other hand, we prove that induced subgraphs of C-I graphs are exactly complements of comparability graphs, and hence the recognition problem for induced subgraphs of C-I graphs of posets is polynomial.  相似文献   

3.
In this paper we examine the connections between equistable graphs, general partition graphs and triangle graphs. While every general partition graph is equistable and every equistable graph is a triangle graph, not every triangle graph is equistable, and a conjecture due to Jim Orlin states that every equistable graph is a general partition graph. The conjecture holds within the class of chordal graphs; if true in general, it would provide a combinatorial characterization of equistable graphs.Exploiting the combinatorial features of triangle graphs and general partition graphs, we verify Orlin’s conjecture for several graph classes, including AT-free graphs and various product graphs. More specifically, we obtain a complete characterization of the equistable graphs that are non-prime with respect to the Cartesian or the tensor product, and provide some necessary and sufficient conditions for the equistability of strong, lexicographic and deleted lexicographic products. We also show that the general partition graphs are not closed under the strong product, answering a question by McAvaney et al.  相似文献   

4.
The problem of recognizing cover-incomparability graphs (i.e. the graphs obtained from posets as the edge-union of their covering and incomparability graph) was shown to be NP-complete in general [J. Maxová, P. Pavlíkova, A. Turzík, On the complexity of cover-incomparability graphs of posets, Order 26 (2009) 229-236], while it is for instance clearly polynomial within trees. In this paper we concentrate on (classes of) chordal graphs, and show that any cover-incomparability graph that is a chordal graph is an interval graph. We characterize the posets whose cover-incomparability graph is a block graph, and a split graph, respectively, and also characterize the cover-incomparability graphs among block and split graphs, respectively. The latter characterizations yield linear time algorithms for the recognition of block and split graphs, respectively, that are cover-incomparability graphs.  相似文献   

5.
A graph is perfect if the chromatic number is equal to the clique number for every induced subgraph of the graph. Perfect graphs were defined by Berge in the sixties. In this survey we present known results about partial characterizations by forbidden induced subgraphs of different graph classes related to perfect graphs. We analyze a variation of perfect graphs, clique-perfect graphs, and two subclasses of perfect graphs, coordinated graphs and balanced graphs.  相似文献   

6.
《Discrete Mathematics》2020,343(1):111637
Huggett and Moffatt characterized all bipartite partial duals of a plane graph in terms of all-crossing directions of its medial graph. Then Metsidik and Jin characterized all Eulerian partial duals of a plane graph in terms of semi-crossing directions of its medial graph. Plane graphs are ribbon graphs with genus 0. In this paper, by introducing the notion of modified medial graphs and using their all-crossing directions, we first extend Huggett and Moffatt’s result from plane graphs to ribbon graphs. Then we characterize all Eulerian partial duals of any ribbon graph in terms of crossing-total directions of its medial graph, which are simpler than semi-crossing directions.  相似文献   

7.
The center of a graph is the set of vertices with minimum eccentricity. Graphs in which all vertices are central are called self-centered graphs. In this paper almost self-centered (ASC) graphs are introduced as the graphs with exactly two non-central vertices. The block structure of these graphs is described and constructions for generating such graphs are proposed. Embeddings of arbitrary graphs into ASC graphs are studied. In particular it is shown that any graph can be embedded into an ASC graph of prescribed radius. Embeddings into ASC graphs of radius two are studied in more detail. ASC index of a graph G is introduced as the smallest number of vertices needed to add to G such that G is an induced subgraph of an ASC graph.  相似文献   

8.
This paper studies a class of delivery problems associated with the Chinese postman problem and a corresponding class of delivery games. A delivery problem in this class is determined by a connected graph, a cost function defined on its edges and a special chosen vertex in that graph which will be referred to as the post office. It is assumed that the edges in the graph are owned by different individuals and the delivery game is concerned with the allocation of the traveling costs incurred by the server, who starts at the post office and is expected to traverse all edges in the graph before returning to the post office. A graph G is called Chinese postman-submodular, or, for short, CP-submodular (CP-totally balanced, CP-balanced, respectively) if for each delivery problem in which G is the underlying graph the associated delivery game is submodular (totally balanced, balanced, respectively). For undirected graphs we prove that CP-submodular graphs and CP-totally balanced graphs are weakly cyclic graphs and conversely. An undirected graph is shown to be CP-balanced if and only if it is a weakly Euler graph. For directed graphs, CP-submodular graphs can be characterized by directed weakly cyclic graphs. Further, it is proven that any strongly connected directed graph is CP-balanced. For mixed graphs it is shown that a graph is CP-submodular if and only if it is a mixed weakly cyclic graph. Finally, we note that undirected, directed and mixed weakly cyclic graphs can be recognized in linear time. Received May 20, 1997 / Revised version received August 18, 1998?Published online June 11, 1999  相似文献   

9.
《Discrete Mathematics》1985,55(2):151-159
In this paper we continue the investigation of the class of edge intersection graphs of a collection of paths in a tree (EPT graphs) where two paths edge intersect if they share an edge. The class of EPT graphs differs from the class known as path graphs, the latter being the class of vertex intersection graphs of paths in a tree. A characterization is presented here showing when a path graph is an EPT graph. In particular, the classes of path graphs and EPT graphs coincide on trees all of whose vertices have degree at most 3. We then prove that it is an NP-complete problem to recognize whether a graph is an EPT graph.  相似文献   

10.
In this paper we deal with cover–incomparability graphs of posets, or briefly C–I graphs. These are graphs derived from posets as the edge-union of their cover graph and their incomparability graph. We answer two recently posed open questions. Which distance-hereditary graphs are C–I graphs? Which Ptolemaic (i.e. chordal distance-hereditary) graphs are C–I graphs? It follows that C–I graphs can be recognized efficiently in the class of all distance-hereditary graph whereas recognizing C–I graphs in general is known to be NP-complete.  相似文献   

11.
The class of edge intersection graphs of a collection of paths in a tree (EPT graphs) is investigated, where two paths edge intersect if they share an edge. The cliques of an EPT graph are characterized and shown to have strong Helly number 4. From this it is demonstrated that the problem of finding a maximum clique of an EPT graph can be solved in polynomial time. It is shown that the strong perfect graph conjecture holds for EPT graphs. Further complexity results follow from the observation that every line graph is an EPT graph. The class of EPT graphs is equivalent to the class of fundamental cycle graphs.  相似文献   

12.
The energy of a graph is equal to the sum of the absolute values of its eigenvalues. Line graphs play an important role in the study of graph theory. Generalized line graphs extend the ideas of both line graphs and cocktail party graphs. In this paper, we establish relations between the energy of the generalized line graph of a graph G and the Laplacian and signless Laplacian energies of G. We give upper and lower bounds for the energy of generalized line graphs. Finally, we present upper and lower bounds for some special graphs.  相似文献   

13.
本文证明了双线性型图与交错型图都不是完美图,从而解决了双线性型图与交错型图的完美图判别问题.  相似文献   

14.
A Hamiltonian path of a graph is a simple path which visits each vertex of the graph exactly once. The Hamiltonian path problem is to determine whether a graph contains a Hamiltonian path. A graph is called Hamiltonian connected if there exists a Hamiltonian path between any two distinct vertices. In this paper, we will study the Hamiltonian connectivity of rectangular supergrid graphs. Supergrid graphs were first introduced by us and include grid graphs and triangular grid graphs as subgraphs. The Hamiltonian path problem for grid graphs and triangular grid graphs was known to be NP-complete. Recently, we have proved that the Hamiltonian path problem for supergrid graphs is also NP-complete. The Hamiltonian paths on supergrid graphs can be applied to compute the stitching traces of computer sewing machines. Rectangular supergrid graphs form a popular subclass of supergrid graphs, and they have strong structure. In this paper, we provide a constructive proof to show that rectangular supergrid graphs are Hamiltonian connected except one trivial forbidden condition. Based on the constructive proof, we present a linear-time algorithm to construct a longest path between any two given vertices in a rectangular supergrid graph.  相似文献   

15.
Fuzzy competition graph as a generalization of competition graph is introduced here. Two generalizations of fuzzy competition graph as fuzzy k-competition graphs and p-competition fuzzy graphs are also defined. These graphs are related to fuzzy digraphs. Fuzzy neighbourhood graphs, related to fuzzy graphs, are also defined here. Besides, some relations between fuzzy competition graphs and fuzzy neighbourhood graphs have been established. And finally, several results to find strong edges of the above mentioned graphs have also been established.  相似文献   

16.
The zero-divisor graph of a commutative semigroup with zero is the graph whose vertices are the nonzero zero-divisors of the semigroup, with two distinct vertices adjacent if the product of the corresponding elements is zero. New criteria to identify zero-divisor graphs are derived using both graph-theoretic and algebraic methods. We find the lowest bound on the number of edges necessary to guarantee a graph is a zero-divisor graph. In addition, the removal or addition of vertices to a zero-divisor graph is investigated by using equivalence relations and quotient sets. We also prove necessary and sufficient conditions for determining when regular graphs and complete graphs with more than two triangles attached are zero-divisor graphs. Lastly, we classify several graph structures that satisfy all known necessary conditions but are not zero-divisor graphs.  相似文献   

17.
A graph is Laplacian integral if the spectrum of its Laplacian matrix consists entirely of integers. We consider the class of constructably Laplacian integral graphs - those graphs that be constructed from an empty graph by adding a sequence of edges in such a way that each time a new edge is added, the resulting graph is Laplacian integral. We characterize the constructably Laplacian integral graphs in terms of certain forbidden vertex-induced subgraphs, and consider the number of nonisomorphic Laplacian integral graphs that can be constructed by adding a suitable edge to a constructably Laplacian integral graph. We also discuss the eigenvalues of constructably Laplacian integral graphs, and identify families of isospectral nonisomorphic graphs within the class.  相似文献   

18.
线团-收敛图     
王艳  钱建国 《数学研究》2002,35(4):376-381
一个图的线团图就是这个图的线图的团图。对于自然数n,一个图被称为n-线团-收敛的,如果它的n次线团图同构于一个固定的图。否则称之为发散的。本刻画了线团-收敛图与发散图,给出一个线团-收敛图的构造方法,并且,讨论了线团-收敛图的线团-收敛指数。  相似文献   

19.
The topological approach to the study of infinite graphs of Diestel and KÜhn has enabled several results on Hamilton cycles in finite graphs to be extended to locally finite graphs. We consider the result that the line graph of a finite 4‐edge‐connected graph is hamiltonian. We prove a weaker version of this result for infinite graphs: The line graph of locally finite, 6‐edge‐connected graph with a finite number of ends, each of which is thin, is hamiltonian.  相似文献   

20.
大量研究表明,图的主特征值的数量与图的结构有着密切关系.通过恰有两个主特征值的图的特征定义了2-邻域k-剖分图,研究了恰有两个主特征值的图与2-邻域k-剖分图之间的关系;同时给出一个2-邻域k-剖分图在k=2,3时为等部剖分的条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号