首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 790 毫秒
1.
A fractional derivative model of linear viscoelasticity based on the decomposition of the displacement field into an anelastic part and elastic part is developed. The evolution equation for the anelastic part is then a differential equation of fractional order in time. By using a fractional order evolution equation for the anelastic strain the present model becomes very flexible for describing the weak frequency dependence of damping characteristics. To illustrate the modeling capability, the model parameters are fit to available frequency domain data for a high damping polymer. By studying the relaxation modulus and the relaxation spectrum the material parameters of the present viscoelastic model are given physical meaning. The use of this viscoelastic model in structural modeling is discussed and the corresponding finite element equations are outlined, including the treatment of boundary conditions. The anelastic displacement field is mathematically coupled to the total displacement field through a convolution integral with a kernel of Mittag–Leffler function type. Finally a time step algorithm for solving the finite element equations are developed and some numerical examples are presented.  相似文献   

2.
In this paper, we formulate a fractional order viscoelastic model for large deformations and develop an algorithm for the integration of the constitutive response. The model is based on the multiplicative split of the deformation gradient into elastic and viscous parts. Further, the stress response is considered to be composed of a nonequilibrium part and an equilibrium part. The viscous part of the deformation gradient (here regarded as an internal variable) is governed by a nonlinear rate equation of fractional order. To solve the rate equation the finite element method in time is used in combination with Newton iterations. The method can handle nonuniform time meshes and uses sparse quadrature for the calculations of the fractional order integral. Moreover, the proposed model is compared to another large deformation viscoelastic model with a linear rate equation of fractional order. This is done by computing constitutive responses as well as structural dynamic responses of fictitious rubber materials.  相似文献   

3.
In this paper, we formulate a fractional order viscoelastic model for large deformations and develop an algorithm for the integration of the constitutive response. The model is based on the multiplicative split of the deformation gradient into elastic and viscous parts. Further, the stress response is considered to be composed of a nonequilibrium part and an equilibrium part. The viscous part of the deformation gradient (here regarded as an internal variable) is governed by a nonlinear rate equation of fractional order. To solve the rate equation the finite element method in time is used in combination with Newton iterations. The method can handle nonuniform time meshes and uses sparse quadrature for the calculations of the fractional order integral. Moreover, the proposed model is compared to another large deformation viscoelastic model with a linear rate equation of fractional order. This is done by computing constitutive responses as well as structural dynamic responses of fictitious rubber materials.  相似文献   

4.
5.
综述了国内和国外学者研究连续介质分析动力学问题的进展,阐明了本文主要论述将Lagrange方程应用于连续介质动力学的问题.论文采用Lagrange-Hamilton体系,分别论述了非保守非线性弹性动力学、不可压缩黏性流体动力学、黏弹性动力学、热弹性动力学、刚--弹耦合动力学和刚--液耦合动力学的Lagrange方程及其应用.论述了应用Lagrange方程建立有限元计算模型的问题. 最后,展望了将Lagrange方程应用于连续介质动力学问题的研究前景.   相似文献   

6.
综述了国内和国外学者研究连续介质分析动力学问题的进展,阐明了本文主要论述将Lagrange方程应用于连续介质动力学的问题.论文采用Lagrange-Hamilton体系,分别论述了非保守非线性弹性动力学、不可压缩黏性流体动力学、黏弹性动力学、热弹性动力学、刚--弹耦合动力学和刚--液耦合动力学的Lagrange方程及其应用.论述了应用Lagrange方程建立有限元计算模型的问题. 最后,展望了将Lagrange方程应用于连续介质动力学问题的研究前景.  相似文献   

7.
This paper is concerned with the formulation of a phenomenological model of finite elasto-plasticity valid for small elastic strains for initially isotropic polycrystalline material. As a basic we assume the multiplicative split of the deformation gradient into elastic and plastic part. A key feature of the model is the introduction of an independent field of 'elastic' rotations which eliminate the remaining geometrical nonlinearities coming from finite elasticity in the presence of small elastic strains. In contrast to micro-polar theories an evolution equation for is presented which relates to making use of a new device found by the author to perform the polar decomposition asymptotically. The model is shown to be invariant under both change of frame and rotation of the so called intermediate configuration. The corresponding equilibrium equations at frozen plastic and viscoelastic configuration constitute then a linear, elliptic system with nonconstant coefficients which makes this model amenable to a rigorous mathematical analysis. The introduced hysteresis effects within the elastic region are related to viscous elastic rotations of the grains of the polycrystal due to internal friction at the grain boundaries and constitute as such a rate dependent transient texture effect. The inclusion of work hardening will be addressed in future work. Received March 07, 2002 / Published online February 17, 2003 RID="*" ID="*"Communicated by Kolumban Hutter, Darmstadt  相似文献   

8.
In this contribution, a numerical framework for the efficient thermo-mechanical analysis of fully 3D tire structures (axisymmetric geometry) in steady state motion is presented. The modular simulation approach consists of a sequentially coupled mechanical and thermal simulation module. In the mechanical module, the Arbitrary Lagrangian Eulerian (ALE) framework is used together with a 3D finite element model of the tire structure to represent its temperature-dependent viscoelastic behavior at steady state rolling and finite deformations. Physically computed heat source terms (energy dissipation from the material and friction in the tire–road contact zone) are used as input quantities for the thermal module. In the thermal module, a representative cross-sectional part of the tire is employed to evaluate the temperature evolution due to internal and external heat sources in a transient thermal simulation. Special emphasis is given to an adequate material test program to identify the model parameters. The parameter identification is discussed in detail. Numerical results for three different types of special performance tires at free rolling conditions are compared to experimental measurements from the test rig, focusing especially on rolling resistance and surface temperature distribution.  相似文献   

9.
10.
A mixed boundary element and finite element numerical algorithm for the simultaneous prediction of the electric fields, viscous flow fields, thermal fields and surface deformation of electrically conducting droplets in an electrostatic field is described in this paper. The boundary element method is used for the computation of the electric potential distribution. This allows the boundary conditions at infinity to be directly incorporated into the boundary integral formulation, thereby obviating the need for discretization at infinity. The surface deformation is determined by solving the normal stress balance equation using the weighted residuals method. The fluid flow and thermal fields are calculated using the mixed finite element method. The computational algorithm for the simultaneous prediction of surface deformation and fluid flow involves two iterative loops, one for the electric field and surface deformation and the other for the surface tension driven viscous flows. The two loops are coupled through the droplet surface shapes for viscous fluid flow calculations and viscous stresses for updating the droplet shapes. Computing the surface deformation in a separate loop permits the freedom of applying different types of elements without complicating procedures for the internal flow and thermal calculations. Tests indicate that the quadratic, cubic spline and spectral boundary elements all give approximately the same accuracy for free surface calculations; however, the quadratic elements are preferred as they are easier to implement and also require less computing time. Linear elements, however, are less accurate. Numerical simulations are carried out for the simultaneous solution of free surface shapes and internal fluid flow and temperature distributions in droplets in electric fields under both microgravity and earthbound conditions. Results show that laser heating may induce a non-uniform temperature distribution in the droplets. This non-uniform thermal field results in a variation of surface tension along the surface of the droplet, which in turn produces a recirculating fluid flow in the droplet. The viscous stresses cause additional surface deformation by squeezing the surface areas above and below the equator plane.  相似文献   

11.
The investigation of the extrusion swelling mechanism of viscoelastic fluids has both scientific and industrial interest. However, it has been traditionally difficult to afford theoretical and experimental researches to this problem. The numerical methodology based on the penalty finite element method with a decoupled algorithm is presented in the study to simulate three‐dimensional extrusion swelling of viscoelastic fluids flowing through out of a circular die. The rheological responses of viscoelastic fluids are described by using three kinds of differential constitutive models including the Phan‐Thien Tanner model, the Giesekus model, and the finite extensible nonlinear elastic dumbbell with a Peterlin closure approximation model. A streamface‐streamline method is introduced to adjust the swelling free surface. The calculation stability is improved by using the discrete elastic‐viscous split stress algorithm with the inconsistent streamline‐upwind scheme. The essential flow characteristics of viscoelastic fluids are predicted by using the proposed numerical method, and the mechanism of swelling phenomenon is further discussed.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A mixed finite element formulation for viscoelastic flows is derived in this paper, in which the FIC (finite incremental calculus) pressure stabilization process and the DEVSS (discrete elastic viscous stress splitting) method using the Crank-Nicolson-based split are introduced within a general framework of the iterative version of the fractional step algorithm. The SU (streamline-upwind) method is particularly chosen to tackle the convective terms in constitutive equations of viscoelastic flows. Thanks to the proposed scheme the finite elements with equal low-order interpolation approximations for stress-velocity-pressure variables can be successfully used even for viscoelastic flows with high Weissenberg numbers. The XPP (extended Pom-Pom) constitutive model for describing viscoelastic behaviors is particularly integrated into the proposed scheme. The numerical results for the 4:1 sudden contraction flow problem demonstrate prominent stability, accuracy and convergence rate of the proposed scheme in both pressure and stress distributions over the flow domain within a wide range of the Weissenberg number, particularly the capability in reproducing the results, which can be used to explain the "die swell" phenomenon observed in the polymer injection molding process.  相似文献   

13.
Many applications of viscoelastic free surface flows requiring formation of drops from small nozzles, e.g., ink-jet printing, micro-arraying, and atomization, involve predominantly extensional deformations of liquid filaments. The capillary number, which represents the ratio of viscous to surface tension forces, is small in such processes when drops of water-like liquids are formed. The dynamics of extensional deformations of viscoelastic liquids that are weakly strain hardening, i.e., liquids for which the growth in the extensional viscosity is small and bounded, are here modeled by the Giesekus, FENE-P, and FENE-CR constitutive relations and studied at low capillary numbers using full 2D numerical computations. A new computational algorithm using the general conformation tensor based constitutive equation [M. Pasquali, L.E. Scriven, Theoretical modeling of microstructured liquids: a simple thermodynamic approach, J. Non-Newtonian Fluid Mech. 120 (2004) 101–135] to compute the time dependent viscoelastic free surface flows is presented. DEVSS-TG/SUPG mixed finite element method [M. Pasquali, L.E. Scriven, Free surface flows of polymer solutions with models based on conformation tensor, J. Non-Newtonian Fluid Mech. 108 (2002) 363–409] is used for the spatial discretization and a fully implicit second-order predictor–corrector scheme is used for the time integration. Inertia, capillarity, and viscoelasticity are incorporated in the computations and the free surface shapes are computed along with all the other field variables in a fully coupled way. Among the three models, Giesekus filaments show the most drastic thinning in the low capillary number regime. The dependence of the transient Trouton ratio on the capillary number in the Giesekus model is demonstrated. The elastic unloading near the end plates is investigated using both kinematic [M. Yao, G.H. McKinley, B. Debbaut, Extensional deformation, stress relaxation and necking failure of viscoelastic filaments, J. Non-Newtonian Fluid Mech. 79 (1998) 469–501] and energy analyses. The magnitude of elastic unloading, which increases with growing elasticity, is shown to be the largest for Giesekus filaments, thereby suggesting that necking and elastic unloading are related.  相似文献   

14.
The interaction between the hydrodynamic forces of a flow field and the elastic forces of adjacent deformable boundaries is described by elastohydrodynamics, a coupled fluid–elastic membrane problem. Direct numerical solution of the unsteady, highly non-linear equations requires that the dynamic evolution of both the flow field and the domain shape be determined as part of the solution, since neither is known a priori. This paper describes a numerical algorithm based on the deformable spatial domain space–time (DSD/ST) finite element method for the unsteady motion of an incompressible, viscous fluid with elastic membrane interaction. The unsteady Navier–Stoke and elastic membrane equations are solved separately using an iterative procedure by the GMRES technique with an incomplete lower-upper (ILU) decomposition at every time instant. One-dimensional, two-dimensional and deformable domain model problems are used to demonstrate the capabilities and accuracy of the present algorithm. Both steady state and transient problems are studied. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
This paper deals with a thermodynamically consistent numerical formulation for coupled thermoplastic problems including phase-change phenomena and frictional contact. The final goal is to get an accurate, efficient and robust numerical model, able for the numerical simulation of industrial solidification processes. Some of the current issues addressed in the paper are the following. A fractional step method arising from an operator split of the governing differential equations has been used to solve the nonlinear coupled system of equations, leading to a staggered product formula solution algorithm. Nonlinear stability issues are discussed and isentropic and isothermal operator splits are formulated. Within the isentropic split, a strong operator split design constraint is introduced, by requiring that the elastic and plastic entropy, as well as the phase-change induced elastic entropy due to the latent heat, remain fixed in the mechanical problem. The formulation of the model has been consistently derived within a thermodynamic framework. All the material properties have been considered to be temperature dependent. The constitutive behavior has been defined by a thermoviscous/elastoplastic free energy function, including a thermal multiphase change contribution. Plastic response has been modeled by a J2 temperature dependent model, including plastic hardening and thermal softening. The constitutive model proposed accounts for a continuous transition between the initial liquid state, the intermediate mushy state and the final solid state taking place in a solidification process. In particular, a pure viscous deviatoric model has been used at the initial fluid-like state. A thermomecanical contact model, including a frictional hardening and temperature dependent coupled potential, is derived within a fully consistent thermodinamical theory. The numerical model has been implemented into the computational finite element code COMET developed by the authors. Numerical simulations of solidification processes show the good performance of the computational model developed.  相似文献   

16.
Waterhammer modeling with fluid–structure interaction (FSI) in a pipeline with axial viscoelastic supports is the aim of this research. The viscoelastic materials of supports (or the pipe wall) were described using the generalized Kelvin–Voigt model. Hydraulic governing equations were solved by the method of characteristic (MOC) and axial vibration equation of the pipe wall was solved using the finite element method (FEM) in the time domain. For a typical case study, four different types for supporting the pipeline in the axial direction: fully free to move; fixed (rigid support); elastic and viscoelastic supports, subject to a waterhammer are analyzed and the results are scrutinized. The results quantitatively confirm that the use of supports with viscoelastic behavior in the axial direction of the pipeline can significantly reduce axial-pipe vibrations (displacements and stresses). The consequences of this structural damping on the attenuation of the internal fluid pressure are further demonstrated.  相似文献   

17.
基于Schapery积分型粘弹性本构关系,推导了考虑横向剪切效应的复合材料层合板线性热粘弹性有限元分析列式,对层合板的粘弹性响应和加工成型过程中的残余应力进行了分析,给出一些有意义的结果  相似文献   

18.
The finite element method is used to find the elastic strain (and thus the stress) for given velocity fields of the Leonov model fluid. With a simple linearization technique and the Galerkin formulation, the quasi-linear coupled first-order hyperbolic differential equations together with a non-linear equality constraint are solved over the entire domain based on a weighted residual scheme. The proposed numerical scheme has yielded efficient and accurate convective integrations for both the planar channel and the diverging radial flows for the Leonov model fluid. Only the strain in the inflow plane is required to be prescribed as the boundary conditions. In application, it can be conveniently incorporated in an existing finite element algorithm to simulate the Leonov viscoelastic fluid flow with more complex geometry in which the velocity field is not known a priori and an iterative procedure is needed.  相似文献   

19.
An analysis of calendering of inelastic (power-law) and viscoelastic sheets of finite initial thickness has been carried out using (i) a perturbation method based on lubrication theory; (ii) an approximate treatment including normal stress effects; (ii) a full numerical analysis using the boundary element method. The Phan-Thien-Tanner (PTT) fluid model was used in the viscoelastic analyses. Attention is focused on the separation criterion at the roll exit plane. While it is usual to assume in the inelastic case that separation occurs when the pressure and pressure gradient vanish simultaneously, it is not clear that this is appropriate in the viscoelastic model. The main new results are (a) a method of determining the separation point numerically using the criterion of zero tangential traction; (b) a computation of welling (∼ 5%) after the sheet leaves the nip; (c) a demonstration that the roll force first decreases as Weissenberg number (roll speed) rises, and then increases.  相似文献   

20.
An appropriate coupled cohesive law for predicting the mixed mode failure is established by combining normal separation and tangential separation of surfaces in the cohesive zone model (CZM) and the cohesive element method. The Xu-Needleman exponential cohesive law with the fully shear failure mechanism is one of the most popular models. Based on the proposed consistently coupled rule/principle, the Xu-Needleman law with the fully shear failure mechanism is proved to be a non-consistently coupled cohesive law by analyzing the surface separation work. It is shown that the Xu-Needleman law is only valid in the mixed mode fracture when the normal separation work equals the tangential separation work. Based on the consistently coupled principle and the modification of the Xu-Needleman law, a consistently coupled cohesive (CCC) law is given. It is shown that the proposed CCC law has already overcome the non-consistency defect of the Xu-Needleman law with great promise in mixed mode analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号