首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we examine the influence of thermomechanical coupling on the behavior of superelastic shape memory alloys subjected to cyclic loading at different loading rates. Special focus is given to the determination of the area of the stress-strain hysteresis loop once the material has achieved a stabilized state. It is found that this area does not evolve monotonically with the loading rate for either transient or asymptotic states. In order to reproduce this observation analytically, a new model is developed based on the ZM model for shape memory alloys which was modified to account for thermomechanical coupling. The model is shown to predict the non-monotonic variation in hysteresis area to good accord. Experimentally observed variations in the temperature of SMA test samples are also correctly reproduced for lower strain rates.  相似文献   

2.
In this work, a general inelastic framework for the derivation of general three-dimensional thermomechanical constitutive laws for materials undergoing phase transformations is proposed. The proposed framework is based on the generalized plasticity theory and on some basic elements from the theory of continuum damage mechanics. More specifically, a new elaborate formulation of generalized plasticity theory capable of accommodating the multiple and interacting loading mechanisms, which occur during the phase transformations, is developed. Furthermore, the stiffness variations occurring during phase transformations are taken into account by the proposed framework. For this purpose, the free energy is decomposed into elastic and inelastic parts, not in a conventional way, but in one which resembles the elastic-damage cases. Also, a rate-dependent version of the theory is provided. The concepts presented are applied for the derivation of a three-dimensional thermomechanical constitutive model for Shape Memory Alloy materials. Numerical simulations to show qualitatively the ability of the model to capture the behavior of the shape memory alloys are also presented. Furthermore, the model has been fitted to actual experimental results from the literature.  相似文献   

3.
This paper presents a generalized Zaki-Moumni (ZM) model for shape memory alloys (SMAs) [cf. Zaki, W., Moumni, Z., 2007a. A three-dimensional model of the thermomechanical behavior of shape memory alloys. J. Mech. Phys. Solids 55, 2455-2490 accounting for thermomechanical coupling. To this end, the expression of the Helmholtz free energy is modified in order to derive the heat equation in accordance with the principles of thermodynamics. An algorithm is proposed to implement the coupled ZM model into a finite element code, which is then used to solve a thermomechanical boundary value problem involving a superelastic SMA structure. The model is validated against experimental data available in the literature. Strain rate dependence of the mechanical pseudoelastic response is taken into account with good qualitative as well as quantitative accuracy in the case of moderate strain rates and for mechanical results in the case of high strain rates. However, only qualitative agreement is achieved for thermal results at high strain rates. It is shown that this discrepancy is mainly due to localization effects which are note taken into account in our model. Analyzing the influence of the heat sources on the material response shows that the mechanical hysteresis is mainly due to intrinsic dissipation, whereas the thermal response is governed by latent heat. In addition, the variation of the area of the hysteresis loop with respect to the strain rate is discussed. It is found that this variation is not monotonic and reaches a maximum value for a certain value of strain rate.  相似文献   

4.
Modeling the dynamic behavior of shape memory alloys   总被引:4,自引:0,他引:4  
The paper studies the single degree of freedom vibration of a rigid mass suspended by a thin-walled shape memory alloy tube under torsional loading. The behavior is analyzed for the cases of quasiplasticity (low temperatures) and pseudoelasticity (high temperatures) on the basis of an improved version of the Müller–Achenbach model. To illustrate the strong hysteresis-induced damping capacity and the non-linear vibration characteristics, both, free and forced vibrations are considered in the first part of the paper. This is done on the basis of an isothermal version of the model, while the second part of the paper focuses on the effect of non-constant temperature caused by the rate-dependent release and absorption of latent heats.  相似文献   

5.
New upper bounds are proposed for a generic problem of geometric compatibility, which covers the problem of bounding the effective recoverable strains in composite shape memory alloys (SMAs), such as polycrystalline SMAs or rigidly reinforced SMAs. Both the finite deformation and infinitesimal strain frameworks are considered. The methodology employed is a generalization of a homogenization approach introduced by Milton and Serkov [2000. Bounding the current in nonlinear conducting composites. J. Mech. Phys. Solids 48, 1295-1324] for nonlinear composites in infinitesimal strains. Some analytical and numerical examples are given to illustrate the method.  相似文献   

6.
This paper presents a new phenomenological constitutive model for shape memory alloys, developed within the framework of irreversible thermodynamics and based on a scalar and a tensorial internal variable. In particular, the model uses a measure of the amount of stress-induced martensite as scalar internal variable and the preferred direction of variants as independent tensorial internal variable. Using this approach, it is possible to account for variant reorientation and for the effects of multiaxial non-proportional loadings in a more accurate form than previously done. In particular, we propose a model that has the property of completely decoupling the pure reorientation mechanism from the pure transformation mechanism. Numerical tests show the ability to reproduce main features of shape memory alloys in proportional loadings and also to improve prediction capabilities under non-proportional loadings, as proven by the comparison with several experimental results available in the literature.  相似文献   

7.
In this paper, a gradient-enhanced 3-D phenomenological model for shape memory alloys using the non-local theory is developed based on a 1-D constitutive model. The method utilizes a non-local field variable in its constitutive framework with an implicit gradient formulation in order to achieve results independent of the finite element discretization. An efficient numerical approach to implement the non-local gradient-enhanced model in finite element codes is proposed. The model is used to simulate stress drop at the onset of transformation, and its performance is evaluated using different experimental data. The potential of the presented numerical approach for behavior of shape memory alloys in eliminating mesh-dependent simulations is validated by conducting various localization problems. The numerical results show that the developed model can simulate the observed unstable behaviors such as stress drop and deviation of local strain from global strain during nucleation and propagation of martensitic phase.  相似文献   

8.
The remarkable properties of shape memory alloys have increasing the interest in applications in different areas varying from biomedical to aerospace hardware. Despite the large number of applications, the modeling of SMA is the objective of many researches developed in order to describe all details of its thermomechanical behavior. The present contribution revisits a constitutive model presented by Savi et al. (2002), which is built up on the classical Fremond’s model, in order to contemplate the horizontal enlargement of the stress–strain hysteresis loop. Numerical simulations present qualitative agreement with experimental data, showing pseudoelastic, one-way and two-way shape memory effects.  相似文献   

9.
A new model for the behavior of polycrystalline shape memory alloys (SMA), based on a statically constrained microplane theory, is proposed. The new model can predict three-dimensional response by superposing the effects of inelastic deformations computed on several planes of different orientation, thus reproducing closely the actual physical behavior of the material. Due to the structure of the microplane algorithm, only a one-dimensional constitutive law is necessary on each plane. In this paper, a simple constitutive law and a robust kinetic expression are used as the local constitutive law on the microplane level. The results for SMA response on the macroscale are promising: simple one-dimensional response is easily reproduced, as are more complex features such as stress-strain subloops and tension-compression asymmetry. A key feature of the new model is its ability to accurately represent the deviation from normality exhibited by SMAs under nonproportional loading paths.  相似文献   

10.
In order to develop a fundamental understanding and the feasibility of SMA devices for passive vibration control, an undamped SDOF system with a pseudoelastic SMA restoring force is investigated to find the basic relationship between the shape of the hysteresis loop of SMA elements and their performance as a damping device. The dynamic characteristics of the device are evaluated by the steady-state response at the resonance point in order to focus on the damping effect. Dynamic analysis utilizing the equivalent linearization approach results in two major findings that, to the best of the authors’ knowledge, have not yet been reported in the literature. These results which characterize the unique behavior of the SMA hysteresis include: (a) for a given excitation amplitude, the “scale” of the hysteresis loop, which is a measure of displacement and restoring force, needs to be adjusted so that the response sweeps the maximum loop but does not exceed it; (b) the ratio of the area confined within the hysteresis loop to the area of a corresponding envelope of triangular shape should be as large as possible. The results of this study would be quite useful not only as a guideline for the design of actual SMA devices, but also as a basis for the development of new autoadaptive materials in future.  相似文献   

11.
We propose a nonlocal continuum model to describe the size-dependent superelastic responses observed in recent experiments of shape memory alloys. The modeling approach extends a superelasticity formulation based on the martensitic volume fraction, and combines it with gradient plasticity theories. Size effects are incorporated through two internal length scales, an energetic length scale and a dissipative length scale, which correspond to the gradient terms in the free energy and the dissipation, respectively. We also propose a computational framework based on a variational formulation to solve the coupled governing equations resulting from the nonlocal superelastic model. Within this framework, a robust and scalable algorithm is implemented for large scale three-dimensional problems. A numerical study of the grain boundary constraint effect shows that the model is able to capture the size-dependent stress hysteresis and strain hardening during the loading and unloading cycles in polycrystalline SMAs.  相似文献   

12.
13.
In this work, we propose a macroscopic phenomenological model that is based on the classical framework of thermodynamics of irreversible processes and accounts for the effect of multiaxial stress states and non-proportional loading histories. The model is able to account for the evolution of both twinned and detwinned martensite. Moreover, reorientation of the product phase according to loading direction is specifically accounted for. Towards this purpose the inelastic strain is split into two contributions deriving, respectively, from creation of detwinned martensite and reorientation of previously existing martensite variants. Computational tests demonstrate the ability of the model to simulate the main aspects of the shape memory response in a one-dimensional setting and some of the features that have been experimentally found in the case of multiaxial non-proportional loading histories. Experimental non-proportional loading paths have also been simulated and a good qualitative agreement between numerical and experimental response is observed.  相似文献   

14.
This paper presents a variational framework for the three-dimensional macroscopic modelling of superelastic shape memory alloys in an isothermal setting. Phase transformation is accounted through a unique second order tensorial internal variable, acting as the transformation strain. Postulating the total strain energy density as the sum of a free energy and a dissipated energy, the model depends on two material scalar functions of the norm of the transformation strain and a material scalar constant. Appropriate calibration of these material functions allows to render a wide range of constitutive behaviours including stress-softening and stress-hardening. The quasi-static evolution problem of a domain is formulated in terms of two physical principles based on the total energy of the system: a stability criterion, which selects the local minima of the total energy, and an energy balance condition, which ensures the consistency of the evolution of the total energy with respect to the external loadings. The local phase transformation laws in terms of Kuhn–Tucker relations are deduced from the first-order stability condition and the energy balance condition.The response of the model is illustrated with a numerical traction–torsion test performed on a thin-walled cylinder. Evolutions of homogeneous states are given for proportional and non-proportional loadings. Influence of the stress-hardening/softening properties on the evolution of the transformation domain is emphasized. Finally, in view of an identification process, the issue of stability of homogeneous states in a multi-dimensional setting is answered based on the study of second-order derivative of the total energy. Explicit necessary and sufficient conditions of stability are provided.  相似文献   

15.
In the present study the two-way shape memory effect (TWSME) of a Ni-51 at.% Ti alloy was investigated and a numerical model, able to simulate its hysteretic behaviour in the strain-temperature response, is proposed. In particular, the TWSME was induced through a proper thermo-mechanical training, carried out at increasing number of training cycles and for two values of training deformation, and the thermal hysteretic behaviour, between M f (Martensite finish temperature) and A f (Austenite finish temperature), was recorded. The experimental measurements were used to develop a phenomenological model, based on the Prandtl-Ishlinksii hysteresis operator, which was implemented in a Matlab® function and a Simulink® model. A systematic comparison between experimental results and numerical predictions is illustrated and a satisfactory accuracy and efficiency has been observed, therefore the method looks suitable for real-time control of NiTi based actuators.  相似文献   

16.
In the last two decades, the problem of computing the elastic energy of phase transforming materials has been studied by a variety of research groups. Due to the non-quasiconvexity of the underlying multi-well landscape, different relaxation methods have been used in order to estimate the quasiconvex envelope of the energy density, for which no explicit expression is known at present.This paper combines a recently developed lamination bound for monocrystalline shape memory alloys which relies on martensitic twinned microstructures with the work of Smyshlyaev and Willis [1998a. A ‘non-local’ variational approach to the elastic energy minimization of martensitic polycrystals. Proc. R. Soc. London A 454, 1573–1613]. As a result, a lamination upper bound for n-variant polycrystalline martensitic materials is obtained.The lamination bound is then compared with Reuß- and Taylor-type estimates. While, for given volume fractions, good agreement of lamination upper and convexification lower bounds is obtained, a comparison using energy-minimizing volume fractions computed from the various bounds yields larger differences. Finally, we also investigate the influence of the polycrystal's texture. For a strong ellipsoidal texture, we observe even better agreement of upper and lower bounds than for the case of isotropic statistics.  相似文献   

17.
The stress-strain isothermal hysteresis loops due to the incomplete martensitic transformation are analysed for Ti-Ni shape memory alloys. Experiments show the existence of two distinct yield lines for phase transition; one for the forward transformation austenitemartensite (AM), the other for the reverse transformation MA. The tensile behaviour of single crystals with only one yield line (AM) [1] can be considered as an ideal case. An extension of a thermodynamic model for pseudoelasticity [2] allows these two yield lines to be taken into account.
Sommario Per leghe Ti-Ni con memoria di forma vengono analizzati i cicli di isteresi isotermici tensione-deformazione prodotti da una incompleta trasformazione martensitica. Gli esperimenti mostrano l'esistenza di due distinte linee di snervamento per la transizione di fase, una verso la trasformazione austenitemartensite (AM), l'altra per la trasformazione inversa MA. Il comportamento a trazione di un singolo cristallo con una sola linea di snervamento (AM) [1], può essere considerato un caso ideale. L'estensione ad un modello termodinamico pseudo-elastico [2] consente di analizzare queste due linee di snervamento.
  相似文献   

18.
Certain alloys such as In-Tl, Ni-Ti, Ag-Cd or Cu-Al-Ni display remarkable mechanical properties such as the shape memory effect or pseudo-elasticity. This behaviour is related to a solid-solid phase transformation which leads to a complicated microscopic arrangement of different phases. In recent studies such microstructures have been analyzed by the minimization of elastic energy. We discuss the influence of additional surface energy terms on the existence of stress-free microstructures both in the nonlinear and a geometrically linear setting.
Sommario Certe leghe come quelle di In-Tl, Ni-Ti, Ag-Cd o Cu-Al-Ni mostrano proprietà meccaniche notevoli quali la memoria di forma o la pseudoelasticità. Questo comportamento è determinato da una trasformazione di fase solido-solido che conduce a complicati arrangiamenti a livelo microscopico. In studi recenti tali microstrutture sono state analizzate attraverso la minimizzazione dell'energia elastica. Noi discutiamo l'influenza di termini addizionali di energia superficiale sull'esistenza di microstrutture in uno stato naturale sia in un contesto lineare che non lineare.
  相似文献   

19.
Crack growth resistance of shape memory alloys (SMAs) is dominated by the transformation zone in the vicinity of the crack tip. In this study, the transformation toughening behavior of a slowly propagating crack in an SMA under plane strain conditions and mode I deformation is numerically investigated. A small-scale transformation zone is assumed. A cohesive zone model is implemented to simulate crack growth within a finite element scheme. Resistance curves are obtained for a range of parameters that specify the cohesive traction-separation constitutive law. It is found that the choice of the cohesive strength t0 has a great influence on the toughening behavior of the material. Moreover, the reversibility of the transformation can significantly reduce the toughening of the alloy. The shape of the initial transformation zone, as well as that of a growing crack is determined. The effect of the Young's moduli ratio of the martensite and austenite phases is examined.  相似文献   

20.
Shape memory alloys (SMAs) provide an attractive solid-state actuation alternative to engineers in various fields due to their ability to exhibit recoverable deformations while under substantial loads. Many constitutive models describing this repeatable phenomenon have been proposed, where some models also capture the effects of rate-independent irrecoverable deformations (i.e., plasticity) in SMAs. In this work, we consider a topic not addressed to date: the generation and evolution of irrecoverable viscoplastic strains in an SMA material. Such strains appear in metals subjected to sufficiently high temperatures. The need to account for these effects in SMAs arises when considering one of two situations: the exposure of a conventional SMA material (e.g., NiTi) to high temperatures for a non-negligible amount of time, as occurs during shape-setting, or the utilization of new high temperature shape memory alloys (HTSMAs), where the elevated transformation temperatures induce transformation and viscoplastic behaviors simultaneously. A new three-dimensional constitutive model based on established SMA and viscoplastic modeling techniques is derived that accounts for these behaviors. The numerical implementation of the model is described in detail. Several finite element analysis (FEA) examples are provided, demonstrating the utility of the new model and its implementation in assessing the effects of viscoplastic behaviors in shape memory alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号