首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A possible mechanism for the vorticity-banding instability is proposed on the basis of experiments with colloidal rod-like particles that exhibit an isotropic–nematic phase transition. The proposed mechanism is similar to the well-known elastic instability for polymer systems that is due to nonuniform elastic deformation of polymer chains as a result of gradients in the local shear rate (the Weissenberg effect). However, the role of polymer chains is now played by inhomogeneities that exist in systems exhibiting vorticity banding. For the rod-like colloidal system investigated here, inhomogeneities are formed during the early stages of phase separation. Nonuniform deformation of these inhomogeneities are thus proposed to lead to hoop stresses which give rise to banded structures where there is secondary, weakly rolling flow within each of the bands. Many of the features found experimentally for the rod-like colloidal system can be understood on the basis of this proposed mechanism. For different types of systems that also show vorticity banding, inhomogeneities can be identified, which might lead to vorticity banding for the same reasons as for the rod-like colloidal systems studied here.  相似文献   

2.
The transient and static anti-plane problem of a rigid line inclusion pulled out from an elastic medium is studied. The singular integral equation method is used to solve the stress field. Under the static load, the stress intensity factor(SIF) at the inclusion tips increases with the medium length. The problem becomes equivalent to an inclusion in a medium with an infinite length when the length of the medium is 3.5times longer than that of the inclusion. However, under the transient load, the ...  相似文献   

3.
A phenomenon of inequality of equilibrium and constitutive internal forces in a cross-section of elastic–plastic beams is common to many finite element formulations. It is here discussed in a rate-independent, elastic–plastic beam context, and a possible treatment is presented. The starting point of our discussion is Reissners finite-strain beam theory, and its finite element implementation. The questions of the consistency of interpolations for displacements and rotations, and the related locking phenomena are fully avoided by considering the rotation function of the centroid axis of a beam as the only unknown function of the problem. Approximate equilibrium equations are derived by the use of the distribution theory in conjunction with the collocation method. The novelty of our formulation is an inclusion of a balance function that measures the error between the equilibrium and constitutive bending moments in a cross-section. An advantage of the present approach is that the locations, where the balance of equilibrium and constitutive moments should be satisfied, can be prescribed in advance. In order to minimize the error, explicit analytical expressions are used for the constitutive forces; for a rectangular cross-section and bilinear constitutive law, they are given in Appendix A. The comparison between the results of the two finite element formulations, the one using consistent, and the other inconsistent equilibrium in a cross-section, is shown for a cantilever beam subjected to a point load. The problem of high curvature gradients in a plastified region is also discussed and solved by using an adapted collocation method, in which the coordinate system is transformed such to follow high gradients of curvature.  相似文献   

4.
The unloading process of an elastic–plastic spherical contact under stick contact condition is analyzed for various material properties. The evolution of normal and shear stress distribution at the contact area as well as the residual profile of the sphere and residual von Mises stresses inside the sphere are presented. Empirical expressions for the residual interference and for the evolution of the interference and contact area during the unloading are provided. Good agreement with experimental results is shown.  相似文献   

5.
The distinction between the near and far-fields for a semi-infinite, elastic strip has been exploited to derive conditions under which different dynamic excitations can be considered as equivalent. These different excitations are equivalent in the sense that they produce the same displacement field far from the excited end. It is shown that dynamically equivalent excitations degenerate to statically equivalent loads in the limit of a vanishing frequency. The no-radiation condition is derived, and its relation to self-equilibrated, dynamic and static loads is presented. Dynamically equivalent excitations are utilized to formulate a dynamic version of Saint-Venant’s principle for symmetric excitations with frequencies below the first cut-off frequency of a strip. It has been shown that the requirement of self-equilibrium of a load for the decay of end effects for static fields can be deduced from the requirement of zero average power for the dynamic fields.  相似文献   

6.
The elastic behavior of an edge dislocation located inside the core of a core–shell nanowire which is embedded in an infinite matrix is studied within the surface/interface elasticity theory. The corresponding boundary value problem is solved exactly by using complex potential functions. An important parameter so-called interface characteristic parameter which has the dimension of length and is a combination of the interface moduli enters the formulations. The stress field of the dislocation, image force acting on the dislocation, and the dislocation strain energy is calculated by considering the interface effect. The introduced characteristic parameter allows the examination of the core–shell size on the image forces acting on the dislocation. The repelling and attracting effects of the interface parameter on the image force are discussed. The equilibrium position of the dislocation is also studied. The dislocation strain energy in the interface elasticity framework is only slightly different from that of traditional elasticity when the dislocation is placed in the central region of the core and reaches its maximum value when it is located near the core–shell interface.  相似文献   

7.
This paper presents analytical Green’s function solutions for an isotropic elastic half-space subject to anti-plane shear deformation. The boundary of the half-space is modeled as a material surface, for which the Gurtin–Murdoch theory for surface elasticity is employed. By using Fourier cosine transform, analytical solutions for a point force applied both in the interior or on the boundary of the half-space are derived in terms of two particular integrals. Through simple numerical examples, it is shown that the surface elasticity has an important influence on the elastic field in the half-space. The present Green’s functions can be used in boundary element method analysis of more complicated problems.  相似文献   

8.
The mechanical behavior of thin elastic films deposited onto structural alloys plays a critical role in determining film durability. This paper presents analysis of an impression experiment designed to evaluate some of the relevant properties of these films. The modeling provides quantitative strain information which can be used to estimate the fracture toughness of the film, the static friction coefficient of the surface and the constitutive behavior of the substrate. Results are presented for radial and circumferential strain distributions in the film relevant to the interpretation of cracking patterns. Additionally, load-displacement curves are provided that may be used to evaluate the plastic properties of the substrate. To facilitate estimates of the film cracking strain through correlation with experiments, the radial strain distributions are presented as functions of impression depth, yield strain and hardening exponent.  相似文献   

9.
The paper presents an analytical solution to Lamé's problem for a hollow sphere with unknown evolving boundaries. The double-sided uniform corrosion of a linearly elastic thick-walled spherical shell under internal and external pressure is considered. It is assumed that the corrosion rates are piecewise linear functions of the maximum principal stress on the related surface, and exponentially decaying with time. The corrosion process is supposed to be divided into three successive stages: constant rate double-sided corrosive wear, a stage of corrosion accelerated on only one of the surfaces of the shell, and a double-sided mechanochemical corrosion. Closed-formed expressions for all the consecutive stages are obtained with their junction points (corresponding to stress corrosion thresholds) being taken into account.  相似文献   

10.
We have been developing a simulation program for use with soil–wheel interaction problems by coupling Finite Element Method (FEM) and Discrete Element Method (DEM) for which a wheel is modeled by FEM and soil is expressed by DEM. Previous two-dimensional FE–DEM was updated to analyze the tractive performance of a flexible elastic wheel by introducing a new algorithm learned from the PID-controller model. In an elastic wheel model, four structural parts were defined using FEM: the wheel rim, intermediate part, surface layer, and wheel lugs. The wheel rigidity was controlled by varying the Young’s Modulus of the intermediate part. The tractive performance of two elastic wheels with lugs for planetary rovers of the European Space Agency was analyzed. Numerical results were compared with experimentally obtained results collected at DLR Bremen, Germany. The FE–DEM result was confirmed to depict similar behaviors of tractive performance such as gross tractive effort, net traction, running resistance, and wheel sinkage, as in the results of experiments. Moreover, the tractive performance of elastic wheels on Mars was predicted using FE–DEM. Results clarified that no significant difference of net traction exists between the two wheels.  相似文献   

11.
The paper presents analytical solutions for the equal-rate mechanochemical wear of an ideal elastic–plastic thick-walled cylindrical tube subjected to any combination of internal and external pressure. The rates of corrosion at the inner and outer surfaces are supposed to be proportional to the equivalent tensile stress at the surface involved when it exceeds a given threshold. Furthermore, the corrosion rate can decay exponentially with time. The obtained solutions allow to assess the time of the initial yielding at the bore of the tube and the time of fully plastic yielding. Calculations showed that the time of plastic-zone propagation throughout the tube wall can be much greater than the length of the pure elastic stage. The proposed analytical solutions are to be used for design purposes and as benchmark solutions for numerical analysis.  相似文献   

12.
For an infinite solid containing a void, the cavitation instability limit is defined as the remote stress–and strain state, at which the void grows without bound, driven by the elastic energy stored in the surrounding material. Such cavitation limits have been analysed by a number of authors for metal plasticity as well as for nonlinear elastic solids. The analyses for elastic–plastic solids are here extended to consider the effect of a large initial yield strain, and it is shown how the critical stress value decays for increasing value of the yield strain. Analyses are carried out for remote hydrostatic tension as well as for more general axisymmetric remote stress field, with an initially spherical void. Different levels of strain hardening are considered.  相似文献   

13.
Normal contact deformation of an asperity and a rigid flat is studied within an axisymmetric finite element model. The asperity features a sinusoidal profile and is elastic–plastic with linear strain hardening. Influences of geometrical (asperity height and width) and loading (the maximum interference) parameters on frictionless contact responses are explored for both loading and unloading. Dimensionless expressions for contact size and pressures covering a large range of interference and asperity ratio values are obtained in power-law forms. Results show the mean contact pressure after fully-plastic contact reaches a plateau only for small asperity ratios, while it continues increasing for large asperity ratios. The residual depth is found to be associated with plastically dissipated energy.  相似文献   

14.
The elastic behavior of a screw dislocation which is positioned inside the shell domain of an eccentric core–shell nanowire is addressed with taking into account the surface/interface stress effect. The complex potential function method in combination with the conformal mapping function is applied to solve the governing non-classical equations. The dislocation stress field and the image force acting on the dislocation are studied in detail and compared with those obtained within the classical theory of elasticity. It is shown that near the free outer surface and the inner core–shell interface, the non-classical solution for the stress field considerably differs from the classical one, while this difference practically vanishes in the bulk regions of the nanowire. It is also demonstrated that the surface with positive (negative) shear modulus applies an extra non-classical repelling (attracting) image force to the dislocation, which can change the nature of the equilibrium positions depending on the system parameters. At the same time, the non-classical solution fails when the dislocation approaches very close to the surface/interface with negative shear modulus. The effects of the core–shell eccentricity and nanowire diameter on dislocation behavior are discussed. It is shown that the non-classical surface/interface effect has a short-range character and becomes more pronounced when the nanowire diameter is smaller than 20 nm.  相似文献   

15.
Fluid–structure interaction phenomena are extremely important when laminar flows through elastic vessels such as in biomedical flow problems are considered. In general, such elastic vessels are curved which is why an elastic 180° bend at a curvature ratio \(\delta = D/D_{\rm C} = 0.\bar{2}\) defines the reference geometry in this study. It is the purpose of this study to compare the results with the steady flow through a 180° rigid pipe bend and to quantify the impact of the fluid–structure interaction on the overall flow pattern and the vessel deformation at oscillating fully developed entrance flow. The findings comprise velocity, pressure, and structure deformation measurements. The vessel dilatation amplitude was varied between 3.75 % and 7 % of the vessel diameter at Dean De and Womersley number Wo ranges of \(327\,\le\,De\,\le\,350\) and \(7\,\le\,Wo\,\le\,8.\) The flow is investigated by time-resolved stereoscopic particle-image velocimetry in five radial cross sections located in the elastic 180° bend and in the inlet pipes. The unsteady static vessel pressure is measured synchronously at these cross sections. The comparison of the steady with the unsteady flow field shows a strong change in the axial and secondary velocity distributions at periods of transition between the centrifugal forces and the unsteady inertia forces dominated regimes. These changes are characterized by asymmetric fluctuations of the centers of the counter-rotating vortex pair. The investigation of the impact of the structure deformation amplitude on these fluctuations reveals a significant attenuation at high deformation amplitudes. The spatial motion of the elastic vessel due to the forces applied by the flow exhibits amplitudes up to 15 % of the vessel diameter. Considering the fluid–structure interaction, an amplification of the volume flux amplitude by a factor of 2.1 at the vessel outlet and phase lags up to 30° occur. The static pressure distribution is characterized by a pronounced asymmetry between forward and backward flow with a 40 % higher peak magnitude at backward flow and phase lags of 35°. The results evidence that a strong distortion of the velocity distribution in the bend, which is caused by the oscillating nature of the flow, is reduced as a result of the fluid–structure interaction.  相似文献   

16.
The paper considers the application of the method of direct separation of motions to the investigation of distributed systems. An approach is proposed which allows one to apply the method directly to the initial equation of motion and to satisfy all boundary conditions, arising for both slow and fast components of motion. The methodology is demonstrated by means of a classical problem concerning the so-called Indian magic rope trick (Blekhman et al. in Selected topics in vibrational mechanics, vol. 11, pp. 139–149, [2004]; Champneys and Fraser in Proc. R. Soc. Lond. A 456:553–570, [2000]; in SIAM J. Appl. Math. 65(1):267–298, [2004]; Fraser and Champneys in Proc. R. Soc. Lond. A 458:1353–1373, [2002]; Galan et al. in J. Sound Vib. 280:359–377, [2005]), in which a wire with an unstable upper vertical position is stabilized due to vertical vibration of its bottom support point. The wire is modeled as a heavy Bernoulli–Euler beam with a vertically vibrating lower end. As a result of the treatment, an explicit formula is obtained for the vibrational correction to the critical flexural stiffness of the nonexcited system.  相似文献   

17.
Recent investigations have shown that the presence of weak cross sections can deeply modify flutter and divergence instability of a cantilever beam-column. Position, intensity of weakness and degree of non-conservativeness not only can alter the value of the critical load of the healthy column but can also produce a modification of the type of instability. In this paper, issues involved in the influence of an elastic end support on flutter and buckling instability of the Beck׳s column in presence of an arbitrary number of weak sections is investigated. In the literature, a numerical study, restricted to the case of a single weak section only, has been presented. The study here proposed has been motivated by an extension to the case of multiple weak sections by means of a model that does not require continuity conditions to be enforced. On the other hand, the latter extension has led to a surprising contradiction of the results previously divulgated for the propped Beck׳s column with a single weak section.The exact solution, in terms of mode shapes and characteristic eigen-value equation of the weakened propped cantilever has been obtained in an explicit suitable form, through the use of generalised functions. The extensive numerical applications aim at the investigation of the effect of different debilitation scenarios in the flutter and buckling instability of the propped cantilever. In particular, the results relative to the case of single-weak section propped column, already investigated in the literature, are discussed in this work and they are shown that do not match those obtained by other authors. The latter incongruence is duly highlighted and discussed to infer the specific motivation.  相似文献   

18.
In this article, Ritz’s method is used to calculate with unprecedented accuracy the displacements related to a deformable rectangular plate resting on the surface of an elastic quarter-space. To achieve this required three basic steps. The first step involved the study of Green’s function describing the vertical displacements of the surface of an elastic quarter-space due to vertical force applied on its surface. For this case, an explicit formula was obtained by analytically resolving a complicated integral that did not previously have an analytical solution. The second step involved the study of the coupled system of a plate and an elastic quarter-space. This portion focused on determining reactive forces in the contact zone based on Hetenyi’s solution. After determination of the reactive forces, certain features were attributed to the plate’s edges. The final step involved the application of Ritz’s method to determine the deflections of the plate resting on the surface of the quarter-space. Finally, an example calculation and validation of results are given. This is the first semi-analytical solution proposed for this type of contact problem.  相似文献   

19.
For elastic isotropic materials under finite strains, we consider an elastic potential in the form of a function of invariants of the Hencky logarithmic strain measure. For such a potential, we propose a representation in A. A. Il’yushin’s generalized strain space. This representation is used to construct an approximation to the elastic potential for incompressiblematerials; this approximation permits exactly describing the stress-strain, compression, and pure shear diagrams.  相似文献   

20.
Modeling strategies aimed at thermo-mechanical coupled problems has been developed for a wide range of engineering applications. Staggered-type coupling procedures have been largely used in materials processing operations, especially in commercial codes, owing to their simplicity and flexibility. The present work shows that, in thermo-plastic problems, the classical implementation of the most common coupling procedure may present accuracy issues and time-stepping dependency. Numerical experiments indicate that an iterative coupling scheme constitutes a viable and simple approach to this class of problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号