首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The bimodal plasticity model of fibre-reinforced materials is currently available and applicable only in association with thin-walled fibrous composites containing a family of straight fibres which are conveniently assumed parallel with the x1-axis of an appropriately chosen Cartesian co-ordinate system. Based on reliable experimental evidence, the model suggests that plastic slip in the composite operates in two distinct modes; the so-called matrix dominated mode (MDM) which depends on a matrix yield stress, and the fibre dominated mode (FDM) which depends also on the fibre yield stress. Each mode is activated by different states of applied stress, has its own yield surface (or surfaces) in the stress space and has its own segment on the overall yield surface of the composite. This paper employs theory of tensor representations and produces a form-invariant generalisation of both modes of the model. This generalisation furnishes the model with direct applicability to relevant plasticity problems, regardless of the shape of the fibres or the orientation of the co-ordinate system. It thus provides a proper mathematical foundation that underpins important physical concepts associated with the model while it also elucidates several technical relevant issues. A most interesting of those issues is the revelation that activation of the MDM plastic regime is possible only if the applied stress state allows the fibres to act like they are practically inextensible. Moreover, activation of the more dominant, between the two MDM plastic slip branches is possible only if conditions of material incompressibility hold, in addition to the implied condition of fibre inextensibility. A direct mathematical connection is thus achieved between basic, experimentally verified concepts of the bimodal plasticity model and a relevant mathematical model originated earlier from the theory of ideal fibre-reinforced materials. An additional issue of discussion involves the number of independent yield stress parameters that the bimodal theory needs to take into consideration. Moreover, an analytical expression is provided of a relatively simple mathematical surface that possesses all known features of the FDM yield surface; currently captured with the aid of both experimental and computational means. The present study is guided by the existing relevant experimental evidence which, however, is principally associated with the plastic behaviour of solids reinforced by strong fibres. Nevertheless, several of the outlined developments are expected to be applicable to composite materials containing a single family of more compliant or even weak fibres.  相似文献   

2.
This study is motivated by evidence suggesting that the equations of polar elasticity of fibre-reinforced materials are non-elliptic even within the regime of infinitesimal deformations. In its endeavour to resolve this issue, which in symmetric-stress elasticity emerges in the regime of finite deformations only, it lays the foundation for development of a second-gradient theory of linear elasticity. Complete formulation of this new theory is achieved for locally transverse isotropic materials; namely, materials having embedded a single unidirectional family of arbitrarily shaped fibres which are resistant in bending, stretching and twist. The associated analysis shows that, indeed, the obtained Navier-type displacement equations are not elliptic. They accordingly predict that there exist in the material weak discontinuity surfaces, which may indeed be activated within the infinitesimal deformation regime. Surfaces containing the fibres are certainly such surfaces of weak discontinuity; this result may be not irrelevant to numerous practical situations where straight metallic fibres in fibre-reinforced concrete structures emerge partially de-bonded and exposed from their concrete matrix. Nevertheless, the analysis reveals further that additional surfaces of weak discontinuity may well exist in the locally transverse isotropic material of interest. An extension framework is also outlined towards cases of fibrous composites containing two or more families of non-perfectly flexible fibres.  相似文献   

3.
In this paper the basic equations governing the plane strain or generalized plane stress deformations of a linear elastic material reinforced by a single family of parallel inextensible fibres are deduced. It is found that a single system of equations will cover all cases. The solutions for plane, half-plane and strip problems are evaluated and compared with those for an ideal fibre-reinforced material.  相似文献   

4.
The classical flow theory of plasticity has been extended to the large strain range for anisotropic metallic materials. The following concepts have been incorporated into the constitutive framework: (1) the convected coordinates and the contravariant true stress, (2) an observer independent yield function, (3) the convected rate for general kinematics of deformation, and (4) the rotation of material texture expressed by a constitutive spin. The theory has been applied to the problem of free-end torsion of a thin-walled tube. The predicted results of shear stress-strain curve, axial strain versus shear strain curve, back stress versus shear strain curve, and initial and subsequent yield surfaces compare favorably with experimental data obtained by the author and his co-workers. It has been shown that the yield function defined by the contravariant true stress can account for the distortion of the yield loci.  相似文献   

5.
The mechanical behavior of ideal truss lattice materials is controlled by the so-called direct action mechanism at the microscale which involves the uniform stretching and compressing of individual truss members. Standard homogenization techniques have been employed to develop a general micromechanics-based finite-strain constitutive model for truss lattice materials. Furthermore, a specialized small-strain plasticity model has been derived. Both models have been implemented in a finite-element program and used to simulate the anisotropic plastic behavior of the octet-truss lattice material in various applications including cyclic uniaxial loading, pure shear, and three-point bending. The constitutive model predictions agree well with the results obtained from discrete finite element models. Regarding the plasticity of the octet-truss lattice material, it has been found that the elastic domain is constrained by twelve pairwise parallel hyperplanes in the six-dimensional stress space. Moreover, the mechanism-based small-strain formulation reveals that the direction of plastic flow is normal to the pressure-dependent macroscopic yield surfaces.  相似文献   

6.
A finite strain hyper elasto-plastic constitutive model capable to describe non-linear kinematic hardening as well as non-linear isotropic hardening is presented. In addition to the intermediate configuration and in order to model kinematic hardening, an additional configuration is introduced – the center configuration; both configurations are chosen to be isoclinic. The yield condition is formulated in terms of the Mandel stress and a back-stress with a structure similar to the Mandel stress.It is shown that the non-dissipative part of the plastic velocity gradient not governed by the thermodynamical framework and the corresponding quantity associated with the kinematic hardening influence the material behaviour to a large extent when kinematic hardening is present. However, for isotropic elasticity and isotropic hardening plasticity it is shown that the non-dissipative quantities have no influence upon the stress–strain relation.As an example, kinematic hardening von Mises plasticity is considered, which fulfils the plastic incompressibility condition and is independent of the hydrostatic pressure. To evaluate the response and to examine the influence of the non-dissipative quantities, simple shear is considered; no stress oscillations occur.  相似文献   

7.
Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an interior node and independent interpolations of bending angles and warp and takes diversified factors into consideration, such as traverse shear deformation, torsional shear deformation and their coupling, coupling of flexure and torsion, and the second shear stress. The geometrical nonlinear strain is formulated in updated Lagarange (UL) and the corresponding stiffness matrix is derived. The perfectly plastic model is used to account for physical nonlinearity, and the yield rule of von Mises and incremental relationship of Prandtle-Reuss are adopted. Elastoplastic stiffness matrix is obtained by numerical integration based on the finite segment method, and a finite element program is compiled. Numerical examples manifest that the proposed model is accurate and feasible in the analysis of thin-walled structures.  相似文献   

8.
A bifurcation of an equilibrium state for ideal fibre-reinforced material is discussed. It is assumed that the material is elastic, locally transversely isotropic, incompressible and inextensible in the direction of fibres. On a finite state of strain an arbitrary field of small displacements is superposed and a set of governing equations for the perturbed state is derived.As an example a stability problem of a rectangular block. Objected to a finite, homogeneous deformation is considered. A discussion of the results is focused on the influence on the stability of the pressure applied in the direction of fibres.Due to the assumption of inextensibility this pressure has no influence on the state of strain, but it is shown that it may cause a loss of stability.  相似文献   

9.
Laboratory tests have been conducted to investigate the inelastic behaviour of aluminium alloy AA6060 T4 subjected to non-proportional cyclic loading. The results of four tests with variable strain path shapes and strain amplitudes are reported in this paper. The tests were carried out by applying combined axial force and torque to thin-walled tubular specimens, using effective strain amplitudes in the range 0.4–0.8%. Major emphasis has been put on the two important material properties: plastic anisotropy and influence of strain range and strain path shapes on cyclic hardening. A constitutive model for cyclic plasticity is used to predict the stress response of the alloy for the non-proportional strain paths applied in the experiments. The model adopts a quadratic yield function and multi-component non-linear isotropic and kinematic hardening rules to describe plastic anisotropy, the shape of the hysteresis loops and the evolution of cyclic hardening. Good agreement is obtained between the physical and correlated stress response of the alloy.  相似文献   

10.
Based on the theories of Timoshenko's beams and Vlasov's thin-walled members, a new spatial thin-walled beam element with an interior node is developed. By independently interpolating bending angles and warp, factors such as transverse shear deformation, torsional shear deformation and their Coupling, coupling of flexure and torsion, and second shear stress are considered. According to the generalized variational theory of Hellinger-Reissner, the element stiffness matrix is derived. Examples show that the developed model is accurate and can be applied in the finite element analysis of thinwalled structures.  相似文献   

11.
A new Eulerian rate type elastic-perfectly plastic model has recently been established by utilizing the newly discovered logarithmic rate. It has been proved that this model is unique among the objective elastic-perfectly plastic models with all objective corotational stress rates and other known objective stress rates by virtue of the self-consistency criterion: the hypoelastic formulation intended for elastic behaviour must be exactly integrable to deliver a hyperelastic relation. The finite simple shear response of this model has been studied and shown to be reasonable for both shear and normal stress components. On the other hand, a kinematic hardening plasticity model may be formulated by adopting the logarithmic rate. The objective of this work is to further study the large deformation responses of the foregoing two kinds of idealized models, in particular the well-known Swift effect, in torsion of thin-walled cylindrical tubes. A complete, rigorous analysis is made for the orders of magnitude of all stress components. A closed-form solution is obtained for the kinematic hardening plastic case, and an analytical perturbation solution is derived for the elastic-perfectly plastic case. It is shown that the simple idealized kinematic hardening model with the logarithmic rate, which uses only two classical material constants, i.e., the initial (tensile) yield stress and the hardening modulus, may arrive at satisfactory explanation for and reasonable accord with salient features of experimental observation.  相似文献   

12.
Post-microbuckling of fibre bridging kink bands under compression   总被引:1,自引:0,他引:1  
Surface originated kink bands consist of an important failure mode for fibre-reinforced composites under compression. The mechanical behavior of the fibre bridging kink bands is explored herein in the context of the post-microbuckling theory. Expressions of bridging force are obtained for the entire postbuckling process of the fibres exhibiting weak or strong hardening. The postbuckling formulation of the fibres is applied to yield the toughness increment due to the advancing kink bands, and consequently leads to a quantitative prediction on the overall compressive stress strain curves of the fibre-reinforced composites. The project supported by the National Natural Science Foundation of China  相似文献   

13.
轴压下各向异性开口薄壁杆的非线性共振   总被引:1,自引:0,他引:1  
本文推导了轴压下各向异性薄壁直杆的非线性动力学方程组.在推导中计及了杆壁中面的剪切变形,以及开口薄壁杆中剪应力沿厚度变化而造成的Saint-Venant扭矩,但略去了杆壁的弯曲.从这一方程组出发,用渐近方法计算了简谐变化轴向压力作用下薄壁杆共振时幅频曲线,且对各种影响因素,包括Saint-Venant扭矩的影响,作了分析.  相似文献   

14.
A step shear load moves steadily on the surface of an elastic-plastic half space at a speed exceeding the elastic shear wave speed of the material. The orientation of the shear traction is such that the deformation is two-dimensional antiplane strain. Two different representations of the rate independent elastic-plastic material response are considered. The first material model is based on the associated flow rule and the Mises yield condition with isotropic hardening, whereas the second model is based on a particular flow theory of plasticity which represents incremental behavior at a corner of the instantaneous yield surface. Both models predict the same response under the same proportional loading. The stress history experienced by a typical material particle during passage of the load step is determined, and the variation of final strain with the magnitude of the load step is calculated. One conclusion resulting from comparison of results for the two material models for this problem is that the influence of yield surface vertex formation is not significant.  相似文献   

15.
An asymptotically correct beam model is obtained for a long, thin-walled, circular tube with circumferentially uniform stiffness (CUS) and made of generally anisotropic materials. By virtue of its special geometry certain small parameters cause unusual non-linear phenomena, such as the Brazier effect, to be exhibited. The model is constructed without ad hoc approximations from 3D elasticity by deriving its strain energy functional in terms of generalized 1D strains corresponding to extension, bending, and torsion. Large displacement and rotation are allowed but strain is assumed to be small. Closed-form expressions are provided for the 3D non-linear warping and stress fields, the 1D non-linear stiffness matrix and the bending moment–curvature relationship. In bending, failure could be caused by limit-moment instability, local buckling or material failure of a ply. A procedure to determine the failure load is provided based on the non-linear response, neglecting micro-mechanical failure modes, post-failure behavior, and hygrothermal effects. Asymptotic considerations lead to the neglect of local shell interlaminar and transverse shear stresses for the thin-walled configuration. Results of the theory are illustrated for a few symmetric, antisymmetric angle-ply and unsymmetric layups and show that some previously published theories are not asymptotically correct.  相似文献   

16.
In the present paper two thermodynamically consistent large strain plasticity models are examined and compared in finite simple shear. The first model (A) is based on the multiplicative decomposition of the deformation gradient, while the second one (B) on the additive decomposition of generalized strain measures. Both models are applied to a rigid-plastic material described by the von Mises-type yield criterion. Since both models include neither hardening nor softening law, a constant shear stress response even for large amounts of shear is expected. Indeed, the model A exhibits the true constant shear stress behavior independent of the elastic material law. In contrast, the model B leads to a spurious shear stress increase or drop such that its applicability under finite shear deformations may be questioned.  相似文献   

17.
基于Timoshenko梁及Benscoter薄壁杆件理论,建立了考虑剪切变形、弯扭耦合以及翘曲剪应力影响的空间任意开闭口薄壁截面梁单元. 通过引入单元内部结点,对弯曲转角和翘曲角采用三节点Lagrange独立插值的方法,考虑了剪切变形和翘曲剪应力的影响并避免了横向剪切锁死问题;借助载荷作用下薄壁梁的截面运动分析,在位移和应变方程中考虑了弯扭耦合的影响. 通过数值算例将该单元的计算结果与理论解以及商用有限元软件和其他文献中的数值解进行对比和验证,结果对比表明该薄壁梁单元具有良好的精度和收敛性.  相似文献   

18.
Vehicle tyres are anisotropic inhomogeneous fibre-reinforced shells which undergo finite elastic deformations. Calculation of their stress and deformation fields is a difficult task and is normally performed using the finite element technique. In this paper an attempt is made to provide an approximate analysis of the deformation field modelling the tyre as an ideal fibre-reinforced material. Radial-ply tyres are reinforced by a belt of fibres running around the wheel in the circumferential direction under the tread of the tyre. A second set of fibres lies in each radial cross-section, of the tyre and runs from the bead wire which seats against one wheel rim to the bead wire at the other wheel rim. We shall assume each radial cross-section of the tyre is in a state of plane strain and is formed from an arch of fibre-reinforced composite material which is reinforced in the hoop direction. This composite is assumed to be an ideal material which is inextensible in the fibre-direction and is incompressible. The plane-strain deformations of this section are examined and then used to analyse the deformation of the tyre as a whole.  相似文献   

19.
Microbending experiments of pure aluminum show that the springback angles increase with the decrease of foil thickness, which indicates obvious size effects and attributes to plastic strain gradient hardening. Then a constitutive model, taking into accounts both plastic strain and plastic strain gradient hardening, is proposed to analyze the microbending process of thin foil. The model is based on the relationship between shear yield stress and dislocation density, in which the material intrinsic length is related to material properties and average grain numbers along the characteristic scale direction of part. It is adopted in analytical model to calculate the non-dimensional bending moment and predict the springback angle after microbending. It is confirmed that the predictions by the proposed hardening model agree well with the experimental data, while those predicted by the classical plasticity model cannot capture such size effects. The contribution of plastic strain gradient increases with the decrease of foil thickness and is independent on the bending angle.  相似文献   

20.
在对大量的套管全尺寸挤毁试验结果分析的基础上,提出套管外压失稳机理:实际工程中的套管截面不是理想圆,在外压作用下的非圆套管圆周方向上环向应力分布不均匀,有附加弯矩效应;随外压增加,在最大压缩环向应力处达到屈服;当屈服逸到一定程度时,材料由于强度承载力不足而失效,导致套管发生失稳挤毁。基于上述套管强度挤毁准则,分析了理想弹塑性套管在轴向载荷作用下的抗挤强度计算方法,得到较保守的套管挤毁压力计算公式。与试验结果对比表明:导出的计算公式偏差较小,计算精度满足工程要求,失稳强度准则是适用的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号