首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It is necessary to determine the elastic–plastic interface radius before calculating the stresses in elastic-perfectly plastic thick-walled cylinders under internal pressure. The relationship between the radius and internal pressure is expressed by a transcendental equation in the existing literature. In this paper, we show that the radius can be explicitly expressed as a function of the internal pressure in terms of the Lambert W function, and it is very simple to use this expression to determine the values of the radius with the help of computer algebra systems.  相似文献   

2.
The unloading process of an elastic–plastic spherical contact under stick contact condition is analyzed for various material properties. The evolution of normal and shear stress distribution at the contact area as well as the residual profile of the sphere and residual von Mises stresses inside the sphere are presented. Empirical expressions for the residual interference and for the evolution of the interference and contact area during the unloading are provided. Good agreement with experimental results is shown.  相似文献   

3.
An experimental investigation of the elastic–plastic nature of shock wave propagation in foams was undertaken. The study involved experimental blast wave and shock tube loading of three foams, two polyurethane open-cell foams and a low-density polyethylene closed-cell foam. Evidence of precursor waves was observed in all three foam samples under various compressive wave loadings. Experiments with an impermeable membrane are used to determine if the precursor wave in an open-cell foam is a result of gas filtration or an elastic response of the foam. The differences between quasi-static and shock compression of foams is discussed in terms of their compressive strain histories and the implications for the energy absorption capacity of foam in both loading scenarios. Through a comparison of shock tube and blast wave loading techniques, suggestions are made concerning the accurate measurements of the principal shock Hugoniot in foams.  相似文献   

4.
This paper presents a theoretical study of the effect of nonassociativity of the plastic flow rule on the critical plastic modulus for discontinuous bifurcation in an elastic–plastic material. Nonassociativity in both the spherical and the deviatoric spaces are considered, with an emphasis on the effect of nonassociativity in the deviatoric space. A particular form of nonassociativity in the deviatoric space is introduced, where the projections of the plastic flow direction and the normal to the yield surface are assumed to have the same length but the projection of plastic flow direction is allowed to lag that of the normal by an angle. It is shown that even for the simple yield surface of von Mises, nonassociativity in the deviatoric space can lead to a bifurcation for a load parameter significantly lower than the value predicted with an associated flow rule.  相似文献   

5.
Static and kinematic shakedown theorems are given for a class of generalized standard materials endowed with a hardening saturation surface in the framework of strain gradient plasticity. The so-called residual-based gradient plasticity theory is employed. The hardening law admits a hardening potential, which is a C1-continuous function of a set of kinematic internal variables and of their spatial gradients, and is required to satisfy a global sign restriction (but not to be necessarily convex). The totally produced, the accumulated and the freely moving dislocations per unit volume, distinguished as statistically stored and geometrically necessary ones, are in this way accounted for. Like for a generalized standard material, the shakedown safety factor is found to depend on the (generally size dependent) yield and saturation limits, but not on the particular differential-type hardening law of the material.  相似文献   

6.
The mechanical response of metal–ceramic composites is analysed through a homogenization model accounting for the mechanical behaviour of the constituent materials. In order to achieve this purpose a nonlinear homogenization method based on the phase field approach has been suitably implemented into a numerical code. A prescribed homogenized strain state is applied to a unit volume element of a metal–ceramic composite with proportional loading in which all components of the strain tensor are proportional to one scalar parameter. The mechanical response of the material has been modeled by considering a von Mises plasticity model for the metal phase and a Drucker–Prager associative elastic–plastic material model for the ceramic phase. A two stages plasticity has been obtained in which inelastic strain develops in the metal phase followed by a fully plastic response. A comparison with a finite element model of the stress–strain response of an axisymmetric unit cell has been carried out with the purpose to validate the homogenization based modeling presented in the paper. Plastic parameters of a Drucker–Prager yield surface for the homogenized composite have been calculated at different materials compositions. Associative Drucker–Prager plasticity has been found to be accurate for high ceramic content.  相似文献   

7.
Adhesive contact between a rigid sphere and an elastic film on an elastic–perfectly plastic substrate was examined in the context of finite element simulation results. Surface adhesion was modeled by nonlinear springs obeying a force-displacement relationship governed by the Lennard–Jones potential. A bilinear cohesive zone law with prescribed cohesive strength and work of adhesion was used to simulate crack initiation and growth at the film/substrate interface. It is shown that the unloading response consists of five sequential stages: elastic recovery, interface damage (crack) initiation, damage evolution (delamination), film elastic bending, and abrupt surface separation (jump-out), with plastic deformation in the substrate occurring only during damage initiation. Substrate plasticity produces partial closure of the cohesive zone upon full unloading (jump-out), residual tensile stresses at the front of the crack tip, and irreversible downward bending of the elastic film. Finite element simulations illustrate the effects of minimum surface separation (i.e., maximum compressive surface force), work of adhesion and cohesive strength of the film/substrate interface, substrate yield strength, and initial crack size on the evolution of the surface force, residual deflection of the elastic film, film-substrate separation (debonding), crack-tip opening displacement, and contact instabilities (jump-in and jump-out) during a full load–unload cycle. The results of this study provide insight into the interdependence of contact instabilities and interfacial damage (cracking) encountered in layered media during adhesive contact loading and unloading.  相似文献   

8.
The paper presents an analytical solution to Lamé's problem for a hollow sphere with unknown evolving boundaries. The double-sided uniform corrosion of a linearly elastic thick-walled spherical shell under internal and external pressure is considered. It is assumed that the corrosion rates are piecewise linear functions of the maximum principal stress on the related surface, and exponentially decaying with time. The corrosion process is supposed to be divided into three successive stages: constant rate double-sided corrosive wear, a stage of corrosion accelerated on only one of the surfaces of the shell, and a double-sided mechanochemical corrosion. Closed-formed expressions for all the consecutive stages are obtained with their junction points (corresponding to stress corrosion thresholds) being taken into account.  相似文献   

9.
For an infinite solid containing a void, the cavitation instability limit is defined as the remote stress–and strain state, at which the void grows without bound, driven by the elastic energy stored in the surrounding material. Such cavitation limits have been analysed by a number of authors for metal plasticity as well as for nonlinear elastic solids. The analyses for elastic–plastic solids are here extended to consider the effect of a large initial yield strain, and it is shown how the critical stress value decays for increasing value of the yield strain. Analyses are carried out for remote hydrostatic tension as well as for more general axisymmetric remote stress field, with an initially spherical void. Different levels of strain hardening are considered.  相似文献   

10.
An elastic–plastic constitutive model is proposed to describe 1-D and 2-D ratchetting. The model is also able to give correct results for 2-D ratchetting when only uniaxial identification is used, while no special threshold or parameter is used for the case of non-proportional loading. The original feature of this model consist in the introduction of a ratchetting stress (material characteristic) along with the maximal stress supported in the history of loading and the plastic strain at the last unloading. In this paper uniaxial and 3-D formulations have been described based on a numerical implementation in the software Code_Aster. Uniaxial and also multiaxial identifications have been used. Simulations have been realized for proportional and non-proportional homogeneous cases, as well as for structures under anisothermal thermomechanical loading. The results of a benchmark on a structure, comparing experiment, simulations by this model and some other phenomenological models, and a polycrystalline model are presented. An analysis of error margin due to the choice of Mises criterion is exposed.  相似文献   

11.
A phenomenon of inequality of equilibrium and constitutive internal forces in a cross-section of elastic–plastic beams is common to many finite element formulations. It is here discussed in a rate-independent, elastic–plastic beam context, and a possible treatment is presented. The starting point of our discussion is Reissners finite-strain beam theory, and its finite element implementation. The questions of the consistency of interpolations for displacements and rotations, and the related locking phenomena are fully avoided by considering the rotation function of the centroid axis of a beam as the only unknown function of the problem. Approximate equilibrium equations are derived by the use of the distribution theory in conjunction with the collocation method. The novelty of our formulation is an inclusion of a balance function that measures the error between the equilibrium and constitutive bending moments in a cross-section. An advantage of the present approach is that the locations, where the balance of equilibrium and constitutive moments should be satisfied, can be prescribed in advance. In order to minimize the error, explicit analytical expressions are used for the constitutive forces; for a rectangular cross-section and bilinear constitutive law, they are given in Appendix A. The comparison between the results of the two finite element formulations, the one using consistent, and the other inconsistent equilibrium in a cross-section, is shown for a cantilever beam subjected to a point load. The problem of high curvature gradients in a plastified region is also discussed and solved by using an adapted collocation method, in which the coordinate system is transformed such to follow high gradients of curvature.  相似文献   

12.
The exact analytical solution of buckling in delaminated columns is presented. In order to investigate analytically the influence of axial and shear strains on buckling loads the geometrically exact beam theory is employed with no simplification of the governing equations. The critical forces are then obtained by the linearized stability theory. In the paper, we limit the studies to linear elastic columns with a single delamination, but with arbitrary longitudinal and vertical asymmetry of delamination and arbitrary boundary conditions. The studies of quantitative and qualitative influence of transverse shear are shown in detail and extensive results for buckling loads with respect to delamination length, thickness and longitudinal position are presented.  相似文献   

13.
14.
Solids (or structures) of elastic–plastic internal variable material models and subjected to cyclic loads are considered. A minimum net resistant power theorem, direct consequence of the classical maximum intrinsic dissipation theorem of plasticity theory, is envisioned which describes the material behavior by determining the plastic flow mechanism (if any) corresponding to a given stress/hardening state. A maximum principle is provided which characterizes the optimal initial stress/hardening state of a cyclically loaded structure as the one such that the plastic strain and kinematic internal variable increments produced over a cycle are kinematically admissible. A steady cycle minimum principle, integrated form of the aforementioned minimum net resistant power theorem, is provided, which characterizes the structure’s steady state response (steady cycle) and proves to be an extension to the present context of known principles of perfect plasticity. The optimality equations of this minimum principle are studied and two particular cases are considered: (i) loads not exceeding the shakedown limit (so recovering known results of shakedown theory) and (ii) specimen under uniform cyclic stress (or strain). Criteria to assess the structure’s ratchet limit loads are given. These, together with some insensitivity features of the structure’s alternating plasticity state, provide the basis to the ratchet limit load analysis problem, for which solution procedures are discussed.  相似文献   

15.
16.
Explicit expressions for residual functional gradients are derived. They are used to identify, using gradient methods, the parameters of elastic problems for multicomponent bodies. The method employs the solutions of conjugate problems in the theory (developed by the authors) of optimal control of distributed multicomponent systems  相似文献   

17.
This paper presents a theoretical study of the speeds of plastic waves in rate-independent elastic–plastic materials with anisotropic elasticity. It is shown that for a given propagation direction the plastic wave speeds are equal to or lower than the corresponding elastic speeds, and a simple expression is provided for the bound on the difference between the elastic and the plastic wave speeds. The bound is given as a function of the plastic modulus and the magnitude of a vector defined by the current stress state and the propagation direction. For elastic–plastic materials with cubic symmetry and with tetragonal symmetry, the upper and lower bounds on the plastic wave speeds are obtained without numerically solving an eigenvalue problem. Numerical examples of materials with cubic symmetry (copper) and with tetragonal symmetry (tin) are presented as a validation of the proposed bounds. The lower bound proposed here on the minimum plastic wave speed may also be used as an efficient alternative to the bifurcation analysis at early stages of plastic deformation for the determination of the loss of ellipticity.  相似文献   

18.
In this paper the double-inclusion model, originally developed to determine effective linear elastic properties of composite materials, is reformulated and extended to predict the effective nonlinear elastic–plastic response of two-phase particulate composites reinforced with spherical particles. The resulting problem of elastic–plastic deformation of a double-inclusion embedded in an infinite reference medium subjected to an incrementally applied far-field strain is solved by the finite element method. The proposed double-inclusion model is evaluated by comparison of the model predictions to the available exact results obtained by the direct approach using representative volume elements containing many particles. It is found that the double-inclusion formulation is capable of providing accurate prediction of the effective elastic–plastic response of two-phase particulate composites at moderate particle volume fractions.  相似文献   

19.
An analytical procedure for the evaluation of the elastic–plastic stiffness behaviour of spot welded joints is presented. The procedure is based on a new model of spot weld region: a circular plate having variable thickness with a central rigid nugget, which is resolved using an original analytical method.The closed-form solution allows to describe the displacement of a rigid nugget when an axial orthogonal load is applied on the plate while plasticity and large deflections are present. The goal is to reach a reliable spot weld region model which can be used as the basis to develop a spot weld element in FE analysis even when plasticity and large deflections are in effect.The procedure is as completely original as no other can be found in the technical literature, and it has been applied to some examples of plates usually employed for spot weld analysis. The analytical results obtained by using the new general relations precisely match those obtained modelling spot weld area by FEA.  相似文献   

20.
Here we carry out a systematic parametric study of a uniform cylindrical missile impacting rigid or elastic structures. We give an analytical result for the impact force in case of rigid target. A new parameter, the damage potential is introduced and it is shown that this single dimensionless combination of the parameters describes the course of the impact in this simplest case. For elastic target structures, we also show numerically that the course of the reaction force, the maximum target displacement and the duration of the impact depend primarily on the same dimensionless parameter with a secondary effect of the missile to target mass ratio and the relative stiffness of the target. The rigid target assumption is not always conservative with regard to the reaction force due to target vibration. We find a resonant effect in the maximum target displacement as the function of the missile to target mass ratio. The motivation of our work is rooted in the investigation of aircraft fuselage impact into robust structures like the containment of a nuclear power plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号