首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A detailed numerical study using large‐eddy simulation (LES) and unsteady Reynolds‐averaged Navier–Stokes (URANS) was undertaken to investigate physical processes that are engendered in the injection of a circular synthetic (zero‐net mass flux) jet in a zero pressure gradient turbulent boundary layer. A complementary study was carried out and was verified by comparisons with the available experimental data that were obtained at corresponding conditions with the aim of achieving an improved understanding of fluid dynamics of the studied processes. The computations were conducted by OpenFOAM C++, and the physical realism of the incoming turbulent boundary layer was secured by employing random field generation algorithm. The cavity was computed with a sinusoidal transpiration boundary condition on its floor. The results from URANS computation and LES were compared and described qualitatively and quantitatively. There is a particular interest for acquiring the turbulent structures from the present numerical data. The numerical methods can capture vortical structures including a hairpin (primary) vortex and secondary structures. However, the present computations confirmed that URANS and LES are capable of predicting current flow field with a more detailed structure presented by LES data as expected. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
3.
A primary jet vectoring using synthetic jet actuators with different exit con- figurations was investigated,and the main physical factors influencing jet vectoring were analyzed and summarized.The physical factors of the pressure difference,the location and area of the lower pressure region,the component of the synthetic jet momentum and the entrainment ratio of the synthetic jet flow to primary jet flow directly control the vectoring force and the vectoring angle.Three characteristic parameters of the syn- thetic jet contribute to the pressure difference and the area of the lower pressure region Both the extension step and slope angle of the actuator exit have functions of regulating the location of the lower pressure region,the area of the lower pressure region,and the entrainment ratio of the synthetic jet flow to primary jet flow.The slope angle of the actuator exit has additional functions of regulating the component of the synthetic jet momentum.Based upon analyzing the physical factors of jet vectoring control with syn- thetic jets,the source variables of the physical factors were established.A preparatory control model of jet vectoring using synthetic jet actuator was presented,and it has the benefit of explaining the efficiency of jet vectoring using synthetic jet actuator with source variables at different values,and it indicates the optimal actuator is taking full advantage of the regulating function.  相似文献   

4.
Most of the fundamental studies of the use of air‐jet vortex generators (AJVGs) have concentrated on their potential ability to inhibit boundary layer separation on aerofoils. However, AJVGs may be of use in controlling or enhancing certain features of internal duct flows. For example, they may be of use in controlling the boundary layer at the entrance to engine air intakes, or as a means of increasing mixing and heat transfer. The objective of this paper is to analyse the flow field in the proximity of an air‐jet vortex generator array in a duct by using two local numerical models, i.e. a simple flat plate model and a more geometrically faithful sector model. The sector model mirrors the circular nature of the duct's cross‐section and the centre line conditions on the upper boundary. The flow was assumed fully turbulent and was solved using the finite volume, Navier–Stokes Code CFX 4 (CFDS, AEA Technology, Harwell) on a non‐orthogonal, body‐fitted, grid using the k–ε turbulence model and standard wall functions. Streamwise, vertical and cross‐stream velocity profiles, circulation and peak vorticity decay, peak vorticity paths in cross‐stream and streamwise direction, cross‐stream vorticity profiles and cross‐stream wall shear stress distributions were predicted. Negligible difference in results was observed between the flat plate and the sector model, since the produced vortices were small relative to the duct diameter and close to the surface. The flow field was most enhanced, i.e. maximum thinning of the boundary layer, with a configuration of 30° pitch and 75° skew angle. No significant difference in results could be observed between co‐ and counter‐rotating vortex arrays. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Results are presented for the unsteady, two-dimensional flow and heat transfer due to a square obstruction of diameter d located asymmetrically between the parallel sliding walls of a channel with length-to-height ratio W/H = 6·44. Analysis is based on the numerical solution of spatially and temporally second-order accurate finite difference approximations of the transport equations expressed in curvilinear co-ordinates. Laminar, constant property flow is assumed for obstruction configurations in which the blockage ratio is d/H = 0·192, the nearest-wall distances are g/d = 0·2, 0·5 and 1, the orientation angles are α=0°, 10° and 20° and the Reynolds numbers are Re=100, 500, and 1000. Preparatory testing of the numerical procedure was performed for a variety of documented flows to verify its physiconumerical accuracy and obtain estimates of the residual grid-dependent uncertainties in the variables calculated. Heat transfer, drag and lift coefficients and Strouhal numbers for the present flow were finally calculated to within 4%–7% of their grid-dependent values using non-uniformly spaced grids consisting of (x=99, y=55) nodes. Above a critical value of the Reynolds number, which depends on the geometrical parameters, the flow is characterized by alternate vortex shedding from the obstruction top and bottom surfaces. Streamline, vorticity and particle streakline plots provide qualitative impressions of the unsteady vortical flow. Especially noteworthy are the extremes in the lift coefficient which ranges from large positive values for an obstruction with g/d=0·2 and α=10° to negative values for one with g/d=0·5 and α=0°. Both the drag and lift coefficients as well as the Strouhal number exhibit non-monotonic variations with respect to the parameters explored. Asymmetries in the obstruction location and orientation account for relatively large vortex-induced periodic variations in heat transfer, especially along the wall nearest the obstruction. Notable differences are also predicted for the heat transfer coefficients of the individual obstruction surfaces as a function of the orientation angle.  相似文献   

7.
An automated adaptive remeshing methodology is applied to a synthetic jet. A set of two‐dimensional, axisymmetric, time‐dependent Computational Fluid Dynamics analyses are performed. Grid independence is achieved via successive levels of adaptive refinement using a novel methodology. The method employs adaptive remeshing, performed in an automated fashion. Adaptation criteria are based upon the undivided differences in select field variables. Sensors are placed at strategic locations within the flow field, which are used to aid in judging grid independence. The resulting analytical predictions are compared to an experimental dataset. The automated methodology yields both a verified and validated set of analysis results for the synthetic jet. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
超声速钝体逆向喷流减阻的数值模拟研究   总被引:1,自引:0,他引:1  
为研究逆向喷流技术对超声速钝体减阻的影响,采用标准k-ε湍流模型,通过求解二维Navier-Stokes方程对超声速球头体逆向冷喷流流场进行了数值模拟,并着重分析了喷口总压、喷口尺寸对流场模态和减阻效果的影响。计算结果显示:随着喷流总压的变化,流场可出现两种流动模态,即长射流穿透模态和短射流穿透模态;喷流能使球头体受到的阻力明显减小;存在最大减阻临界喷流总压值(在所研究参数范围内最大减阻可达51.1%);在其它喷流物理参数不变时,随着喷口尺寸的增大,同一流动模态下的减阻效果下降。本文的研究对超声速钝体减阻技术在工程上的应用具有一定的参考价值。  相似文献   

9.
This paper is concerned with the numerical simulation of the flow structure around a square cylinder in a uniform shear flow. The calculations were conducted by solving the unsteady 2D Navier–Stokes equations with a finite difference method. The effect of the shear parameter K of the approaching flow on the vortex-shedding Strouhal number and the force coefficients acting on the square cylinder is investigated in the range K=0·0–0·25 at various Reynolds numbers from 500 to 1500. The computational results are compared with some existing experimental data and previous studies. The effect of shear rate on the Strouhal number and the force acting on the cylinder has a tendency to reduce the oscillation. The Strouhal number, mean drag and amplitude of the fluctuating force tend to decrease as the shear rate increases, but show no significant change at low shear rate. Increasing the Reynolds number decreases the Strouhal number and increases the force acting on the cylinder. At high shear rate the shedding frequencies of the fluctuating drag and lift coefficients are identical. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
The structure of confined wakes behind a square cylinder in a channel is investigated via the numerical solution of the unsteady Navier–Stokes equations. Vortex shedding behind the cylinder induces periodicity in the flow field. Details of the phenomenon are simulated through numerical flow visualization. The unsteady periodic wake can be characterized by the Strouhal number, which varies with the Reynolds number and the blockage ratio of the channel. The periodicity of the flow is, however, damped in the downstream region of a long duct. This damping may be attributed to the influence of side walls on the flow structure.  相似文献   

11.
An experimental and numerical analysis of the interaction between a plane horizontal water flow in a rectangular channel (free water current) and a plane thin water jet (water jet curtain) is presented; the jet flows out vertically from either a slot nozzle in the bottom of the channel or the crest of a rigid spillway at a velocity appreciably (several times) greater than the water velocity in the channel. Numerical calculations were carried out using the STAR-CD software package preliminarily tested against the experimental data obtained. The dependence of the water level in the channel at a certain distance ahead of the jet barrier on the main jet parameters and the water flow rate in the horizontal channel is studied. It is found that in the region of the interface between the flows both steady and unsteady (self-oscillatory) flow patterns can be realized. Steady stream/jet interaction patterns of the “ejection” and “ejection-spillway” types are distinguished and a criterion separating these regimes is obtained. The notion of a rigid spillway equivalent to a jet curtain is introduced and an approximate dependence of its height on the relevant parameters of the problem is derived. The possibility of effectively controlling the water level ahead of a rigid spillway with a sharp edge by means of a plane water jet flowing from its crest is investigated. The boundary of transition to self-oscillation interaction patterns in the region of the flow interface is determined. The structure of these flows and a possible mechanism of their generation are described. Within the framework of the inviscid incompressible fluid model in the approximate formulation for a “thin” jet, an analytical dependence of the greatest possible depth of a reservoir filled with a heavy fluid at rest and screened by a vertical jet barrier on the jet parameters is obtained.  相似文献   

12.
A turbulent axisymmetric air jet impinging on a square cylinder mounted on a flat plate has been studied experimentally. Turbulence statistics and flow’s topology were investigated. When the surface was heated through uniform heat flux, local heat transfer coefficient was measured. The jet from a long round pipe, 75 pipe diameters (D) in length, at Reynolds number of 23,000, impinged vertically on the square cylinder (3D × 3D × 43D). Measurements were performed using particle image velocimetry, flow visualization using fluorescent dye and infrared thermography. The flow’s topology demonstrated a three-dimensional recirculation after separating from the square cylinder and a presence of foci between the bottom corner and the recirculation’s detachment line. The distribution of heat transfer coefficient was explained by the influence of these flow’s structures and the advection of kinetic energy. On the impingement wall of the square cylinder, a secondary peak in heat transfer coefficient was observed. Its origin can be attributed to very pronounced shear production coupled with the external turbulence coming from the free jet.  相似文献   

13.
This paper numerically investigates the effectiveness of the control of steady suction on a stationary circular cylinder with several isolated suction holes on the surface at a subcritical Reynolds number. The control effectiveness as a function of the azimuthal position, spanwise spacing and suction flow rate of the suction holes on the control of the aerodynamic forces on the cylinder and the suppression of alternate vortex shedding are taken into account. The study of the azimuthal location of the suction holes indicates that azimuthal angles of θ=90° and 270°, which are close to the separation point, provide the most substantial decreases in the aerodynamic forces. When restricted to the most effective azimuthal angle, a remarkable control effectiveness can be achieved when the axial spacing between two neighboring suction holes is less than a minimum value even under a small suction momentum coefficient. However, if the axial spacing exceeds the minimum spacing, the control effectiveness will not be saturated even under a very large suction momentum coefficient. Thus, the cause of the effective aerodynamic force control is suggested to be a result of obvious three-dimensional phenomenon in the near wake, which is characterized by the generation of a convergent flow between two neighboring suction hole sections and a stronger, larger three-dimensional vortex pair adjacent to the convergent flow. It has been suggested that this strongly three-dimensional flow pattern is induced by the strong interaction between two neighboring but counter-rotating three-dimensional vortices separately produced by two neighboring suction holes. Moreover, the effects of such three-dimensional flow patterns are investigated in detail based on variations in the flow field and sectional aerodynamic forces in different cross sections. Finally, the upper limit of the axial spacing between two neighboring suction holes to form such a three-dimensional flow pattern is suggested to be between 0.75 D and 1.5 D when the suction flow rate exceeds a certain value.  相似文献   

14.
15.
Predictions are presented of the two-dimensional turbulent flow over a triangular ridge. The time-averaged Reynolds equations are written in an orthogonal curvilinear co-ordinate system and transformed to finite difference form after discretization in physical space. Turbulence is simulated by the two-equation κ-ε model of turbulence. In the first part of the paper the basics of the numerical method are presented and in the second part comparisons are made between predictions and available laboratory data. Therefore the validity and reliability of the method as well as its flexibility in treating complex recirculating flows are assessed. Results of engineering significance are presented of the effect of the ridge slope on the length of the recirculation region and on the overspeed factor on top of the ridge.  相似文献   

16.
17.
The flow and temperature fields of a turbulent impinging jet are rather complex. In order to accurately describe the flow and heat-transfer process, two important factors that must be taken into account are the turbulence model and the wall function. Several turbulence models, including κ–? turbulence models, κ–ω turbulence models, low-Re turbulence models, the κ–κl–ω turbulence model, the Transition SST turbulence model, the V2F turbulence model and the RSM turbulence model, are examined and compared to experimental data. Furthermore, for the near wall region, various wall functions are presented for comparison and they include the standard wall function, the scale wall function, the non-equilibrium wall function and the enhanced wall function. The distribution features of velocity, turbulent kinetic energy and Nusselt number are determined in order to provide a reliable reference for the multiphase impinging jet in the future.  相似文献   

18.
19.
A vorticity-velocity method was used to study the incompressible viscous fluid flow around a circular cylinder with surface suction or blowing. The resulted high order implicit difference equations were effeciently solved by the modified incomplete LU decomposition conjugate gradient scheme (MILU-CG). The effects of surface suction or blowing ' s position and strength on the vortex structures in the cylinder wake, as well as on the drag and lift forces at Reynoldes number Re = 100 were investigated numerically. The results show that the suction on the shoulder of the cylinder or the blowing on the rear of the cylinder can effeciently suppress the asymmetry of the vortex wake in the transverse direction and greatly reduce the lift force; the suction on the shoulder of the cylinder, when its strength is properly chosen , can reduce the drag force significantly , too.  相似文献   

20.
In this article, the transonic inviscid flow over a deformable airfoil with plunging motion is studied numerically. A finite volume method based on the Roe scheme developed in a generalized coordinate is used along with an arbitrary Lagrangian-Eulerian method and a dynamic mesh algorithm to track the instantaneous position of the airfoil.The effects of different governing parameters such as the phase angle, the deformation amplitude, the initial angle of attack, the flapping frequency, and the Mach number on the unsteady flow field and aerodynamic coefficients are investigated in detail. The results show that maneuverability of the airfoil under various flow conditions is improved by the deformation. In addition, as the oscillation frequency of the airfoil increases, its aerodynamic performance is significantly improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号