首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The method earlier developed by one of the authors for identifying ellipsoidal defects is numerically tested for the applicability to the problem of identification of a degenerate ellipsoidal defect, i.e., an elliptic crack. The method is based on the reciprocity functional and the assumption that the displacements are measured in a uniaxial tension test of an isotropic linearly elastic body. Calculations show that the earlier developed method is also efficient for identification of an elliptic crack and its parameters (the center coordinates, the normal to the crack plane, and the directions and lengths of the semiaxes) can be determined with high accuracy. Some examples where the crack has a non-elliptic shape are also considered. It is discovered that, in many cases, the ellipsoids that were constructed by formulas reconstructing the ellipsoidal crack from the data on the external boundary of the body that correspond to a nonelliptic crack, approximate the actual defect with sufficient accuracy. The method stability was investigated with respect to noise in the initial data.  相似文献   

2.
We prove upper and lower bounds on the size of unknown defects, like cavities or rigid inclusions, in an elastic body, from boundary measurements of traction and displacement. Such estimates might be useful in quality testing of materials.  相似文献   

3.
The factorization method, which has previously been used to solve inverse scattering problems, is generalized to geometric inverse problems of static elasticity. We prove that finitely many defects (cavities, cracks, and inclusions) in an isotropic linearly elastic body can be determined uniquely if the operator that takes the forces applied to the body outer boundary to the outer boundary displacements due to these forces is known.  相似文献   

4.
Problems of determining stresses in isolated ellipsoidal rigid inclusions contained in an isotropic elastic space subjected to uniformly distributed loading at infinity are considered. A solution in a closed form is constructed for inclusions shaped as ellipsoids of revolution.  相似文献   

5.
Elastostatic problem of identification of an ellipsoidal cavity or inclusion (rigid or linear elastic) in an isotropic, linear elastic solid is considered. The reciprocity gap functional method is used for solving the problem. It is shown that the parameters of the ellipsoidal defect (coordinates of its center, the directions and magnitudes of the semiaxes and elastic moduli in the case of isotropic, linear elastic inclusion), located in an infinite elastic solid are expressed by means of the values of the reciprocity gap functional. The values of the reciprocity gap functional can be calculated if the loads and displacements corresponding to uniaxial tension (compression) of an infinite solid are known on the closed surface containing the defect inside. Applications of the results to the problem of ellipsoidal defect identification in a bounded body are discussed. A number of numerical examples showing the efficiency of the developed identification method are considered.  相似文献   

6.
Material frame indifference implies that the solution in non-linear elasticity theory for a connected body rigidly rotated at its border is a rigid, stress-free, deformation. If the same problem is considered within linear elasticity theory, considered as an approximation to the true elastic situation, one should expect that if the angle of rotation is small, the body still undergoes a rigid deformation while the corresponding stress, though not zero, remains consistently small. Here, we show that this is true, in general, only for homogeneous bodies. Counterexamples of inhomogeneous bodies are presented for which, whatever small the angle of rotation is, the linear elastic solution is by no means a rigid rotation (in a particular case it is an “explosion”) while the stress may even become infinite. If the same examples are re-interpreted as problems in an elasticity theory based upon genuinely linear constitutive relations which retain their validity also for finite deformations, it is shown that they would deliver constraint reaction forces that are not in equilibrium in the actual, deformed, state. This furnishes another characterization of the impossibility of an exact linear constitutive theory for elastic solids with zero residual stress.   相似文献   

7.
We study stress concentration near a circular rigid inclusion in an unbounded elastic body (matrix). In the matrix, there are wave motions symmetric with respect to the axis passing through the inclusion center and perpendicular to the inclusion. It is assumed that one of the inclusion sides is completely fixed to the matrix, while the other side is separated and the conditions of smooth contact are realized on that side. The solution method is based on the fact that the displacements caused by waves reflected from the inclusion are represented as a discontinuous solution of the Lamé equations. This permits reducing the original problem to a system of singular integral equations for functions related to the stress and displacement jumps on the inclusion. Its solution is constructed approximately by the collocation method with the use of special quadrature formulas for singular integrals. The approximate solution thus obtained permits numerically studying the stress state in the matrix near the inclusion. Technological defects or constructive elements in the form of thin rigid inclusions contained in machine parts and engineering structure members are stress concentration sources, which may result in structural failure. It is shown that the largest stress concentration is observed near separated inclusions. Static problems for elastic bodies with such inclusions have been studied rather comprehensively [1, 2]. The stress concentration near separated inclusions under dynamic actions on the bodies has been significantly less studied even in the case of harmonic vibrations. The results of these studies can be found in [3, 4], where bodies with a thin separated inclusion were considered, and in [5], where the problem about torsional vibrations of a body with a thin circular separated inclusion was studied. The aim of the present paper is to study stress concentration near such an inclusion in the case of interaction with harmonic waves under axial symmetry conditions.  相似文献   

8.
This paper describes a method for determining the strain state of a thin anisotropic plate with elastic arbitrarily arranged elliptical inclusions. Complex potentials are used to reduce the problem to determining functions of generalized complex variables, which, in turn, comes down to an overdetermined system of linear algebraic equations, solved by singular expansions. This paper presents the results of numerical calculations that helped establish the influence of rigidity of elastic inclusions, distances between inclusions, and their geometric characteristics on the bending moments occurring in the plate. It is found that the specific properties of distribution of moments near the apexes of linear elastic inclusions, characterized by moment intensity coefficients, occur only in the case of sufficiently rigid and elastic inclusions.  相似文献   

9.
In this paper, a piezoelectric analogy theorem is proposed, in which a piezoelectric body is represented as being composed of two fictitious bodies, an elastic body and a rigid dielectric body. An electric and elastic multipole approach for the treatment of various defects (dislocation, inhomogeneity, …) in finite piezoelectric media is then developed. It is shown that the electric and elastic coupling effects, the boundary effects, and the defects may be considered uniformly as sources of permanent and induced electric and elastic multipoles.  相似文献   

10.
The DORT method is a selective detection and focusing technique originally developed to detect defects and damages which induce linear changes of the elastic moduli. It is based on the time reversal (TR) where a signal collected from an array of transducers is time reversed and then back-propagated into the medium to obtain focusing on selected targets. TR is based on the principle of spatial reciprocity. Attenuation, dispersion, multiple scattering, mode conversion, etc. do not break spatial reciprocity. The presence of defects or damage, may cause materials to show nonlinear elastic wave propagation behavior that will break spacial reciprocity. Therefore the DORT method will not allow focusing on nonlinear elastic scatterers. This paper presents a new method for the detection and identification of multiple linear and nonlinear scatterers by combining nonlinear elastic wave spectroscopy, time reversal and DORT method. In the presence of nonlinear hysteretic elastic scatterers, forcing the solid with a harmonic excitation, the time reversal operator can be obtained not only at the fundamental frequency of excitation, but also at the odd harmonics. At the fundamental harmonic, either inhomogeneities and linear damages can be individually selected but only at odd harmonics nonlinear hysteretic elastic damages exist. A procedure was developed where by decomposing the operator at the odd harmonics, it was possible to focus on nonlinear scatterers and to differentiate them from the linear inhomogeneities. A complete mathematical nonlinear DORT formulation for 1 and 2D structures is presented. To model the presence of nonlinear elastic hysteretic scatterers a Preisach–Mayergoyz (PM) material constitutive model was used. Results relative to 1 and 2 dimensional structures are reported showing the capability of the method to focus and discern selectively linear and nonlinear scatterers. Furthermore, an analysis was conducted to study the influence of the number of sources and their location on the imaging process showing that using a higher numbers of sensors does not automatically bring to a minor uncoupled behaviour between the nonlinear targets.  相似文献   

11.
A multi-scale constitutive model for the small deformations of semi-crystalline polymers such as high density Polyethylene is presented. Each macroscopic material point is supposed to be the center of a representative volume element which is an aggregate of randomly oriented composite inclusions. Each inclusion consists of a stack of parallel crystalline lamellae with their adjacent amorphous layers.Micro-mechanically based constitutive equations are developed for each phase. A viscoplastic model is used for the crystalline lamellae. A new nonlinear viscoelastic model for the amorphous phase behavior is proposed. The model takes into account the fact that the presence of crystallites confines the amorphous phase in extremely thin layers where the concentration of chain entanglements is very high. This gives rise to a stress contribution due to elastic distortion of the chains. It is shown that the introduction of chains’ elastic distortion can explain the viscoelastic behavior of crystalline polymers. The stress contribution from elastic stretching of the tie molecules linking the neighboring lamellae is also taken into account.Next, a constitutive model for a single inclusion considered as a laminated composite is proposed. The macroscopic stress-strain behavior for the whole RVE is found via a Sachs homogenization scheme (uniform stress throughout the material is assumed).Computational algorithms are developed based on fully implicit time-discretization schemes.  相似文献   

12.
In the context of the direct or Cosserat theory of rods developed by Green, Naghdi and several of their co-workers, this paper is concerned with the development of a theory of small deformations which are superposed on large deformations. The resulting theory is properly invariant under all superposed rigid body motions. Furthermore, it is also valid for elastic rods which are subject to kinematical constraints, and it specializes to a linear theory of an elastic rod which is invariant under superposed rigid body motions. The construction of these theories is based on the method developed by Casey & Naghdi [1] who established similar theories for unconstrained nonpolar elastic bodies.  相似文献   

13.
各向异性体内含任意孔洞对反平面波散射的边界元方法   总被引:3,自引:0,他引:3  
本文借助于广义格林公式导出了用位移表示的各向异性介质中SH波入射时的边界积分方程.根据本文作者在文献[8]给出的基本解,求解了各向异性介质中孔洞对SH波的散射问题.边界积分方程的离散基于常数元模式.文中给出了一个圆柱、一个椭圆柱和两个椭圆柱形式的孔洞周围的位移场和应力场的数值结果.最后,对入射波频率较高时的情形作了说明.  相似文献   

14.
The scattering problem of elastic wave by arbitrarily shaped cavities in an infinite anisotropic medium is investigated by the boundary integral equation (BIE) method. The formulations of BIE are derived with the help of generalized Green's formula. The discretization of BIE is based upon constant elements. After confirmation of the accuracy of the present method, some numerical examples are given for various cavities in a full space, in which an isotropic body with a circular cylinder hole is used for comparison and good agreement is observed. It has been proved that the method developed in this paper is effective.  相似文献   

15.
含正交排列夹杂和缺陷材料的等效弹性模量和损伤   总被引:3,自引:0,他引:3  
赵爱红  虞吉林 《力学学报》1999,31(4):475-483
研究含正交排列夹杂和缺陷材料的等效弹性模量和损伤,推导了以Eshelby-Mori-Tanaka方法求解多相各向异性复合材料等效弹性模量的简便计算公式,针对含三相正交椭球状夹杂的正交各向异性材料,得到了由细观参量(夹杂的形状、方位和体积分数)表示的等效弹性模量的解析表达式.在此基础上,提出了一个宏细观结合的正交各向异性损伤模型,从而建立了以细观量为参量的含损伤材料的应力应变关系.最后,对影响材料损伤的细观结构参数进行了分析.  相似文献   

16.
This paper presents a quantitative study of the size of representative volume element (RVE) of random matrix-inclusion composites based on a scale-dependent homogenization method. In particular, mesoscale bounds defined under essential or natural boundary conditions are computed for several nonlinear elastic, planar composites, in which the matrix and inclusions differ not only in their material parameters but also in their strain energy function representations. Various combinations of matrix and inclusion phases described by either neo-Hookean or Ogden function are examined, and these are compared to those of linear elastic types.  相似文献   

17.
The accurate series solution have been obtained of the elasticity theory problem for a transversely isotropic solid containing a finite or infinite periodic array of anisotropic spherical inclusions. The method of solution has been developed based on the multipole expansion technique. The basic idea of method consists in expansion the displacement vector into a series over the set of vectorial functions satisfying the governing equations of elastic equilibrium. The re-expansion formulae derived for these functions provide exact satisfaction of the interfacial boundary conditions. As a result, the primary spatial boundary-value problem is reduced to an infinite set of linear algebraic equations. The method has been applied systematically to solve for three models of composite, namely a single inclusion, a finite array of inclusions and an infinite periodic array of inclusions, respectively, embedded in a transversely isotropic solid. The numerical results are presented demonstrating that elastic properties mismatch, anisotropy degree, orientation of the anisotropy axes and interactions between the inclusions can produce significant local stress concentration and, thus, affect greatly the overall elastic behavior of composite.  相似文献   

18.
If a body with a stiffer surface layer is loaded in compression, a surface wrinkling instability may be developed. A bifurcation analysis is presented for determining the critical load for the onset of wrinkling and the associated wavelength for materials in which the elastic modulus is an arbitrary function of depth. The analysis leads to an eigenvalue problem involving a pair of linear ordinary differential equations with variable coefficients which are discretized and solved using the finite element method.The method is validated by comparison with classical results for a uniform layer on a dissimilar substrate. Results are then given for materials with exponential and error-function gradation of elastic modulus and for a homogeneous body with thermoelastically induced compressive stresses.  相似文献   

19.
In this study, singular stress fields at the ends of fibers are discussed by the use of models of rectangular and cylindrical inclusions in a semi-infinite body under pullout force. Those singular stresses have not been discussed yet in the previous studies for pullout problems although they are important for causing interfacial initial debonding. The body force method is used to formulate those problems as a system of singular integral equations where unknowns are densities of the body forces distributed in a semi-infinite body having the same elastic constants as those of the matrix and inclusions. In order to compare the results with the previous solutions, tension problems of a fiber in a semi-infinite body are also considered. Then, generalized stress intensity factors at the corner of rectangular and cylindrical inclusions are systematically calculated for various geometrical conditions with varying the elastic ratio, length, and spacing of the location from edge to inner of the body. The effects of elastic modulus ratio and aspect ratio of inclusion upon the stress intensity factors are discussed for pullout problems.  相似文献   

20.
In the context of inverse problems in mechanics, it is well known that the most typical situation is that neither the interior nor all the boundary is available to obtain data to detect the presence of inclusions or defects. We propose here an adaptive method that uses loads and measures of displacements only on part of the surface of the body, to detect defects in the interior of an elastic body. The method is based on Small Amplitude Homogenization, that is, we work under the assumption that the contrast on the values of the Lamé elastic coefficients between the defect and the matrix is not very large. The idea is that given the data for one loading state and one location of the displacement sensors, we use an optimization method to obtain a guess for the location of the inclusion and then, using this guess, we adapt the position of the sensors and the loading zone, hoping to refine the current guess.Numerical results show that the method is quite efficient in some cases, using in those cases no more than three loading positions and three different positions of the sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号