首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Tantalum complexes [TaCp*Me{κ4C,N,O,O‐(OCH2)(OCHC(CH2NMe2)?CH)py}] ( 4 ) and [TaCp*Me{κ4C,N,O,O‐(OCH2)(OCHC(CH2NH2)?CH)py}] ( 5 ), which contain modified alkoxide pincer ligands, were synthesized from the reactions of [TaCp*Me{κ3N,O,O‐(OCH2)(OCH)py}] (Cp*=η5‐C5Me5) with HC?CCH2NMe2 and HC?CCH2NH2, respectively. The reactions of [TaCp*Me{κ4C,N,O,O‐(OCH2)(OCHC(Ph)?CH)py}] ( 2 ) and [TaCp*Me{κ4C,N,O,O‐(OCH2)(OCHC(SiMe3)?CH)py}] ( 3 ) with triflic acid (1:2 molar ratio) rendered the corresponding bis‐triflate derivatives [TaCp*(OTf)23N,O,O‐(OCH2)(OCHC(Ph)?CH2)py}] ( 6 ) and [TaCp*(OTf)23N,O,O‐(OCH2)(OCHC(SiMe3)?CH2)py}] ( 7 ), respectively. Complex 4 reacted with triflic acid in a 1:2 molar ratio to selectively yield the water‐soluble cationic complex [TaCp*(OTf){κ4C,N,O,O‐(OCH2)(OCHC(CH2NHMe2)?CH)py}]OTf ( 8 ). Compound 8 reacted with water to afford the hydrolyzed complex [TaCp*(OH)(H2O){κ3N,O,O‐(OCH2)(OCHC(CH2NHMe2)?CH2)py}](OTf)2 ( 9 ). Protonation of compound 8 with triflic acid gave the new tantalum compound [TaCp*(OTf){κ4C,N,O,O‐(OCH2)(HOCHC(CH2NHMe2)?CH)py}](OTf)2 ( 10 ), which afforded the corresponding protonolysis derivative [TaCp*(OTf)23N,O,O‐(OCH2)(HOCHC(CH2NHMe2)?CH2)py}](OTf) ( 11 ) in solution. Complex 8 reacted with CNtBu and potassium 2‐isocyanoacetate to give the corresponding iminoacyl derivatives 12 and 13 , respectively. The molecular structures of complexes 5 , 7 , and 10 were established by single‐crystal X‐ray diffraction studies.  相似文献   

2.
Reaction of the potassium salt of N‐thiophosphorylated thiourea α‐naphthylNHC(S)NHP(S)(OiPr)2 ( HL ) with Cu(PPh3)3I in aqueous EtOH/CH2Cl2 leads to the mononuclear complex [Cu(PPh3)2L–S,S′]. By using copper(I) iodide instead ofCu(PPh3)3I, the polynuclear complex [Cun(L–S,S′)n] was obtained. The structures of these compounds were investigated by elemental analysis, 1H and 31P{1H} NMR and IR spectroscopy. The crystal structures of HL and Cu(PPh3)2L were determined by single‐crystal X‐ray diffraction.  相似文献   

3.
Directed tridentate Lewis acids based on the 1,3,5‐trisilacyclohexane skeleton with three ethynyl groups [CH2Si(Me)(C2H)]3 were synthesised and functionalised by hydroboration with HB(C6F5)2, yielding the ethenylborane {CH2Si(Me)[C2H2B(C6F5)2]}3, and by metalation with gallium and indium organyls affording {CH2Si(Me)[C2M(R)2]}3 (M=Ga, In, R=Me, Et). In the synthesis of the backbone the influence of substituents (MeO, EtO and iPrO groups at Si) on the orientation of the methyl group was studied with the aim to increase the abundance of the all‐cis isomer. New compounds were identified by elemental analyses, multi‐nuclear NMR spectroscopy and in some cases by IR spectroscopy. Crystal structures were obtained for cis‐trans‐[CH2Si(Me)(Cl)]3, all‐cis‐[CH2Si(Me)(H)]3, all‐cis‐[CH2Si(Me)(C2H)]3, cistrans‐[CH2Si(Me)(C2H)]3 and all‐cis‐[CH2Si(Me)(C2SiMe3)]3. A gas‐phase electron diffraction experiment for all‐cis‐[CH2Si(Me)(C2H)]3 provides information on the relative stabilities of the all‐equatorial and all‐axial form; the first is preferred in both solid and gas phase. The gallium‐based Lewis acid {CH2Si(Me)[C2Ga(Et)2]}3 was reacted with a tridentate Lewis base (1,3,5‐trimethyl‐1,3,5‐triazacyclohexane) in an NMR titration experiment. The generated host–guest complexes involved in the equilibria during this reaction were identified by DOSY NMR spectroscopy by comparing measured diffusion coefficients with those of the suitable reference compounds of same size and shape.  相似文献   

4.
Reaction of [Au(DAPTA)(Cl)] with RaaiR’ in CH2Cl2 medium following ligand addition leads to [Au(DAPTA)(RaaiR’)](Cl) [DAPTA=diacetyl-1,3,5-triaza-7-phosphaadamantane, RaaiR’=p-R-C6H4-N=N- C3H2-NN-1-R’, (1—3), abbreviated as N,N’-chelator, where N(imidazole) and N(azo) represent N and N’, respectively; R=H (a), Me (b), Cl (c) and R’=Me (1), CH2CH3 (2), CH2Ph (3)]. The 1H NMR spectral measurements in D2O suggest methylene, CH2, in RaaiEt gives a complex AB type multiplet while in RaaiCH2Ph it shows AB type quartets. 13C NMR spectrum in D2O suggest the molecular skeleton. The 1H-1H COSY spectrum in D2O as well as contour peaks in the 1H-13C HMQC spectrum in D2O assign the solution structure.  相似文献   

5.
New monoanionic CNC pincer ligands, [N{SiMe2CH2(RIm)}2] (R = tBu, iPr, Ph) featuring three different N-heterocyclic carbenes and a disilylamido moiety is reported. Treatment of the lithium salt of [N{SiMe2CH2(RIm)}2] with CuIOTf afforded the corresponding copper complexes [N{SiMe2CH2(RIm)}2]Cu in 41–56 % yield. X-ray crystal structures of [N{SiMe2CH2(RIm)}2]Cu show that they are monomeric and feature three-coordinate, pseudo T-shaped copper(I) sites. The X-ray crystal structure of one of the precursor lithium complexes, [N{SiMe2CH2(tBuIm)}2]Li is also presented.  相似文献   

6.
(Acetoxymethyl)silanes 2 , 7 a – c , and 10 a – c with at least one alkoxy group, of the general formula (AcOCH2)Si(OR)3?n(CH3)n (R: Me, Et, iPr; n=0, 1, 2), were synthesized from the corresponding (chloromethyl)silanes 1 , 6 a – c , and 9 a – c by treatment with potassium acetate under phase‐transfer‐catalysis conditions. These compounds were found to provide 2,2,5,5‐organo‐substituted 1,4‐dioxa‐2,5‐disilacyclohexanes 3 , 8 a – c , and 11 a – c if treated with organotin(IV) catalysts such as dioctyltin oxide. The reaction proceeds through transesterification of the acetoxy and alkoxy units followed by ring‐closure to form a dimeric six‐membered ring. The corresponding alkyl acetates are formed as the reaction by‐products. With these mild conditions, the method overcomes the drawbacks of previously reported synthetic routes to furnish 2,2,5,5‐tetramethyl‐1,4‐dioxa‐2,5‐disilacyclohexane ( 3 ) and even allows the synthesis of 1,4‐dioxa‐2,5‐disilacyclohexanes bearing hydrolytically labile alkoxy substituents at the silicon atom in good yields and high purity. These new materials were fully characterized by NMR spectroscopy, elemental analysis, mass spectrometry, and X‐ray analysis (trans‐ 8 a ).  相似文献   

7.
The structures of two arylsulfonamide para‐alkoxychalcones, namely, N‐{4‐[(E)‐3‐(4‐methoxyphenyl)prop‐2‐enoyl]phenyl}benzenesulfonamide, C22H19NO4S, (I), and N‐{4‐[(E)‐3‐(4‐ethoxyphenyl)prop‐2‐enoyl]phenyl}benzenesulfonamide, C23H21NO4S, (II), reveal the effect of the inclusion of one –CH2– group between the CH3 branch and the alkoxy O atom on the conformation and crystal structure. Although the molecular conformations and one‐dimensional chain motifs are the same in both structures, their crystallographic symmetry, number of independent molecules and crystal packing are different. The crystal packing of (I) is stabilized by weak C—H...π and π–π interactions, while only C—H...π contacts occur in the structure of (II). The role of the additional methylene group in the crystal packing can also be seen in the fact that the alkoxy O atom is an acceptor in nonclassical hydrogen bonds only in the para‐ethoxy analogue, (II). The remarkable similarity between the crystal packing features of (I) and (II) lies in the formation of N—H...O hydrogen‐bonded ribbons, a synthon commonly found in related compounds.  相似文献   

8.
Hexakis[bis(2-aminoethoxy)methylsilylethyl]benzene and hexakis[bis(N,N-dimethyl-2-aminoethoxy)methylsilylethyl]benzene C6[(NR2CH2CH2O)2SiMeCH2CH2]6 (4, R = H; 5, R = Me) were prepared from hexakis(methyldichlorosilylethyl)benzene C6(Cl2MeSiCH2CH2)6 and 2-aminoethanol or N,N-dimethyl-2-aminoethanol, respectively. Compounds 4 and 5 react with anhydrous cobalt (ii) chloride to give poorly soluble dodecachloro{hexakis[bis(2-aminoethoxy)methylsilylethyl]benzene}hexacobalt and dodecachloro{hexakis[bis(N,N-dimethyl-2-aminoethoxy)methylsilylethyl]benzene}hexacobalt {Co6[(NR2CH2CH2O)2SiMeCH2CH2]6C6}Cl12 (R = H or Me), respectively. Polyfunctional amine 4 reacts with dicobalt octacarbonyl to produce hexakis[bis(2-aminoethoxy)methylsilylethyl]benzenedicobalt(ii) tetrakis(tetracarbonylcobaltate) {Co2[(NH2CH2CH2O)2SiMeCH2CH2]6C6}[Co(CO)4]4. N,N-Dimethyl-substituted polyfunctional amine 5 is lowly reactive in the reaction with Co2(CO)8, whereas the simplest model of this compound, viz., bis(N,N-dimethyl-2-aminoethoxy)dimethylsilane (NMe2CH2CH2O)2SiMe2, slowly reacts with Co2(CO)8 to give tris[bis(N,N-dimethyl-2-aminoethoxy)dimethylsilane]cobalt(ii) bis(tetracarbonylcobaltate) {Co[(NMe2CH2CH2O)2SiMe2]3}[Co(CO)4]2. Thermal decomposition and transformations of the resulting complexes under the action of oxygen and water were studied.  相似文献   

9.
Bis(μ2‐3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trien‐1‐olato)bis[(3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trien‐1‐olato)copper(II)]–urea–acetone (1/6/2), [Cu2(C10H11O2)4]·6CH4N2O·2C3H6O, where 3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trien‐1‐olate is the systematic name for the hinokitiolate anion, contains three novel structural features. First, it contains a bis(hinokitiolato)copper(II) dimer, [Cu(hino)2]2, unlike any other, demonstrating that linkage isomerism is another avenue by which Cu(hino)2 can transmute from one form to another. Second, [Cu(hino)2]2 is hydrogen bonded to two urea molecules, indicating that hydrogen bonding cannot yet be discounted from any proposed mechanism of action for the antimicrobial and antiviral properties of bis(hinokitiolato)copper(II). Finally, corrugated urea layers crosslinked by [Cu(hino)2]2 dimers are observed, suggesting that a new family of host–guest materials, i.e. metallo–urea clathrates, exists to challenge our understanding of crystal engineering and crystal growth and design. Selected details of the structure are that the [Cu(hino)2]2 dimers possess crystallographic inversion symmetry, the Cu atoms have square‐pyramidal coordination geometries, the basal Cu—O bonds are in the range 1.916 (2)–1.931 (2) Å, the apical Cu—O bond length is 2.582 (2) Å, the hinokitiolate bite angles are in the range 83.41 (7)–83.96 (8)°, the urea–Cu(hino)2 interactions have an R22(8) motif, and the urea layers result from the close packing of R86(28) `butterflies' and R86(24) `strips of tape'.  相似文献   

10.
Three new diclofenac‐based copper(II) complexes, namely tetrakis{μ‐2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O:O′}bis(methanol‐κO)copper(II), [Cu2(μ‐dicl)4(CH3OH)2] ( 1 ), bis{2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O,O′}bis(1‐vinyl‐1H‐imidazole‐κN3)copper(II), [Cu(dicl)2(vim)2] ( 2 ), and bis{2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O,O′}bis(1H‐imidazole‐κN3)copper(II), [Cu(dicl)2(im)2] ( 3 ) [dicl is diclofenac (C14H10Cl2NO2), vim is 1‐vinylimidazole (C5H6N2) and im is imidazole (C3H4N2)], have been synthesized and characterized by elemental analysis, FT–IR spectroscopy, thermal analysis and single‐crystal X‐ray diffraction. X‐ray diffraction analysis shows that complex 1 consists of dimeric units in which the dicl ligand exhibits a bidentate syn,syn‐μ2 coordination mode linking two copper(II) centres. Complexes 2 and 3 have mononuclear units with the general formula [Cu(dicl)2L2] (L is vim or im) in which the CuII ions are octahedrally coordinated by two L and two dicl chelating ligands. The L and dicl ligands both occupy the trans positions of the coordination octahedron. The different coordination modes of dicl in the title complexes were revealed by Fourier transform IR (FT–IR) spectroscopy. The spin matching between the copper(II) centres in the dimeric [Cu2(μ‐dicl)4(CH3OH)2] units was also confirmed by magnetic data to be lower than the spin‐only value and electron paramagnetic resonance (EPR) spectra. The thermal properties of the complexes were investigated by thermogravimetric (TG) and differential thermal analysis (DTA) techniques.  相似文献   

11.
The structure and reactivity of a series of new ethylaminedithiazinanes and bis‐diethylaminedithiazinanes synthesized from formaldehyde, NaSH, and N,N‐dimethyl‐ethylene‐diamine ( 1 ), N‐methyl‐ethylene‐diamine ( 2 ), and N‐ethyl‐ethylene‐diamine ( 3 ) are reported. Compound 1 afforded 2‐([1,3,5]‐dithiazinan‐5‐yl)‐ethylene‐N,N‐dimethyl‐amine ( 4 ). The reaction of 4 with dry CH2Cl2 gave N‐{2‐([1,3,5]dithiazinan‐5‐yl)‐ethylene}‐N‐chloromethyl‐N,N‐dimethyl‐ammonium chloride ( 5 ) in high yield, whereas in wet CH2Cl2 and DMSO provided a mixture of 5 with N‐{2‐([1,3,5]‐dithiazinan‐5‐yl)‐ethylene}‐N,N‐dimethyl‐ammonium hydrochloride ( 6 ).bis‐{2‐([1,3,5]‐Dithiazinan‐5‐yl)‐ethylene‐N‐alkyl‐amino}‐methylene‐disulfides ( 7 ) and ( 8 ) formed by two dithiazinanes linked through the chain  (CH2)2 NRCH2 S S CH2 NR (CH2)2‐ ( 7 R = methyl, 8 R = ethyl) reacted with CH2Cl2 giving after neutralization of the hydrolysis products the ethylaminedithiazinanes with different pendant N‐groups [ (CH2)2NMeH2+( 9 );  (CH2)2NEtH2+ ( 10 );  (CH2)2NMeH ( 11 );  (CH2)2NEtH ( 12 );  (CH2)2NMeHBH3 ( 13 )  (CH2)2NEtHBH3 ( 14 ).  (CH2)2NMe2BH3 ( 15 ), and  (CH2)2NEtMeBH3.( 16 )]. The x‐ray diffraction analyses of compounds 5 , 6 , 9 , and 10 are reported. Variable temperature NMR experiments afforded the Δ G of the ring interconversion of the six‐membered heterocycles 6 , 9 , and 10 . © 2010 Wiley Periodicals, Inc. Heteroatom Chem 22:59–71, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20657  相似文献   

12.
Addition of one equivalent of LiN(i-Pr)2 or LiN(CH2)5 to carbodiimides, RN=C=NR [R=cyclohexyl (Cy), isopropyl (i-Pr)], generated the corresponding lithium of tetrasubstituted guanidinates {Li[RNC(N R^′2)NR](THF)}2 [R=i-Pr, N R^′2=N(i-Pr)2 (1), N(CH2)5 (2); R=Cy, N R^′2=N(i-Pr)2 (3), N(CH2)5 (4)]. Treatment of ZrCl4 with freshly prepared solutions of their lithium guanidinates provided a series of bis(guanidinate) complexes of Zr with the general formula Zr[RNC(N R^′2)NR]2Cl2 [R=i-Pr, N R^′2=N(i-Pr)2 (5), N(CH2)5 (6); R=Cy, N R^′2=N(i-Pr)2 (7), N(CH2)5 (8)]. Complexes 1, 2, 5-8 were characterized by elemental analysis, IR and ^1H NMR spectra. The molecular structures of complexes 1, 7 and 8 were further determined by X-ray diffraction studies.  相似文献   

13.
On Chalcogenolates. 129. Studies on Esters of N-Cyancarbamic Acid. 2. Synthesis, Spectroscopic Characterization, and Decomposition of O-Methyl and O-Ethyl N-Cyancarbamate NH4[NC? N? CO? OR], where R = CH3 and C2H5, reacts with acids to yield unstable NC? NH? CO? OR. The esters decompose to form NC? N?C(NH2)? NH? CO? OR. The compounds have been characterized by means of electron absorption, 1H and 13C NMR, infrared, and mass spectra.  相似文献   

14.
A number of (hydroxyalkylamine)‐N‐(aminoalkyl)azanonaborane(11) derivatives have been synthesized to provide azanonaboranes with different hydrophilic functional groups for use in the treatment of cancer by boron neutron capture therapy (BNCT). The exo‐diamine group of (aminoalkylamine)‐N‐(aminoalkyl)azanonaborane(11) {H2N(CH2)mH2NB8H11NH(CH2)mNH2, where m = 4–6} can be substituted by amino alcohol ligands {HO(CH2)nNH2, where n = 3 and 4} to give azanonaboranes containing free amino and hydroxy groups: (3‐hydroxypropylamine)‐N‐(aminobutyl)azanonaborane(11) {HO(CH2)3H2NB8H11NH(CH2)4NH2}, 1 ; (4‐hydroxybutylamine)‐N‐ (aminobutyl)azanonaborane(11) {HO(CH2)4H2NB8H11NH(CH2)4NH2}, 2 ; (3‐hydroxypropylamine)‐N‐ (aminopentyl)azanonaborane(11) {HO(CH2)3H2NB8H11NH(CH2)5NH2}, 3 ; (4‐hydroxypropylamine)‐N‐(aminopentyl)azanonaborane(11) {HO(CH2)4H2NB8H11NH(CH2)5NH2}, 4 ; (3‐hydroxypropylamine)‐N‐(aminohexyl)azanonaborane(11) {HO(CH2)3H2NB8H11NH(CH2)6NH2}, 5 . The in vitro toxicity test using Chinese hamster‐V79 cells showed that compounds 1 – 3 were less toxic (LD50 value of ~2.3, 1.7 and 1.4 mM , respectively) than spermine and spermidine (LD50 value of ~0.88 and 0.66 mM , respectively). In vivo distribution experiments of these compounds in Lewis lung carcinoma and B16 melanoma tumor‐bearing mice showed that boron can be found in tumor tissue. The compounds prepared can be considered as a new class of boron containing polyamine compounds that may be useful for boron neutron capture therapy of tumors. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
A one‐pot template condensation of 2‐(2‐(dicyanomethylene)hydrazinyl)benzenesulfonic acid (H2L1, 1 ) or 2‐(2‐(dicyanomethylene)hydrazinyl)benzoic acid (H2L2, 2 ) with methanol (a), ethylenediamine (b), ethanol (c) or water (d) on copper(II), led to a variety of metal complexes, that is, mononuclear [Cu(H2O)2O1N2 L1a] ( 3 ) and [Cu(H2O)(κO1N3 L1b)] ( 4 ), tetranuclear [Cu4(1 κO1N2:2 κO1 L2a)3‐(1 κO1, κN2:2 κO2 L2a)] ( 5 ), [Cu2(H2O)(1 κO1, κN2:2 κO1 L2c)‐(1 κO1,1 κN2:2 κO1,2 κN1‐ L2c)]2 ( 6 ) and [Cu2(H2O)2O1N2‐ L1dd)‐(1 κO1N2:2 κO1 L1dd)(μ‐H2O)]2 ? 2 H2O ( 7? 2 H2O), as well as polymer‐ ic [Cu(H2O)(κO1,1 κN2:2 κN1 L1c)]n ( 8 ) and [Cu(NH2C2H5)(κO1,1 κN2:2 κN1L2a)]n ( 9 ). The ligands 2‐SO3H‐C6H4‐(NH)N?C{(CN)[C(NH2)‐(?NCH2CH2NH2)]} (H2L1b, 10 ), 2‐CO2H‐C6H4‐(NH)N?{C(CN)[C(OCH3)‐(?NH)]} (H2L2a, 11 ) and 2‐SO3H‐C6H4‐(NH)N?C{C(?O)‐(NH2)}2 (H2L1dd, 12 ) were easily liberated upon respective treatment of 4 , 5 and 7 with HCl, whereas the formation of cyclic zwitterionic amidine 2‐(SO3?)? C6H4? N?NC(? C?(NH+)CH2CH2NH)(?CNHCH2CH2NH) ( 13 ) was observed when 1 was treated with ethylenediamine. The hydrogen bond‐induced E/Z isomerization of the (HL1d)? ligand occurs upon conversion of [{Na(H2O)2(μ‐H2O)2}(HL1d)]n ( 14 ) to [Cu(H2O)6][HL1d]2 ? 2 H2O ( 15 ) and [{CuNa(H2O)‐(κN1,1 κO2:2 κO1 L1d)2}K0.5(μ‐O)2]n ? H2O ( 16 ). The synthesized complexes 3 – 9 are catalyst precursors for both the selective oxidation of primary and secondary alcohols (to the corresponding carbonyl compounds) and the following diastereoselective nitroaldol (Henry) reaction, with typical yields of 80–99 %.  相似文献   

16.
Methanol‐ and temperature‐induced dissolution–recrystallization structural transformation (DRST) was observed among two novel CuII complexes. This is first time that the combination of X‐ray crystallography, mass spectrometry and density functional theory (DFT) theoretical calculations has been used to describe the fragmentation and recombination of a mononuclear CuII complex at 60 °C in methanol to obtain a binuclear copper(II) complex. Combining time‐dependent high‐resolution electrospray mass spectrometry, we propose a possible mechanism for the conversion of bis(8‐methoxyquinoline‐κ2N,O)bis(thiocyanato‐κN)copper(II), [Cu(NCS)2(C10H9NO)2], Cu1 , to di‐μ‐methanolato‐κ4O:O‐bis[(8‐methoxyquinoline‐κ2N,O)(thiocyanato‐κN)copper(II)], [Cu2(CH3O)2(NCS)2(C10H9NO)2], Cu2 , viz. [Cu(SCN)2( L )2] ( Cu1 ) → [Cu( L )2] → [Cu( L )]/ L → [Cu2(CH3O)2(NCS)2( L )2] ( Cu2 ). We screened the antitumour activities of L (8‐methoxyquinoline), Cu1 and Cu2 and found that the antiproliferative effect of Cu2 on some tumour cells was much greater than that of L and Cu1 .  相似文献   

17.
A series of unusual chemical‐bond transformations were observed in the reactions of high active yttrium? dialkyl complexes with unsaturated small molecules. The reaction of scorpionate‐anchored yttrium? dibenzyl complex [TpMe2Y(CH2Ph)2(thf)] ( 1 , TpMe2=tri(3,5‐dimethylpyrazolyl)borate) with phenyl isothiocyanate led to C?S bond cleavage to give a cubane‐type yttrium–sulfur cluster, {TpMe2Y(μ3‐S)}4 ( 2 ), accompanied by the elimination of PhN?C(CH2Ph)2. However, compound 1 reacted with phenyl isocyanate to afford a C(sp3)? H activation product, [TpMe2Y(thf){μ‐η13‐OC(CHPh)NPh}{μ‐η32‐OC(CHPh)NPh}YTpMe2] ( 3 ). Moreover, compound 1 reacted with phenylacetonitrile at room temperature to produce γ‐deprotonation product [(TpMe2)2Y]+[TpMe2Y(N=C?CHPh)3]? ( 6 ), in which the newly formed N?C?CHPh ligands bound to the metal through the terminal nitrogen atoms. When this reaction was carried out in toluene at 120 °C, it gave a tandem γ‐deprotonation/insertion/partial‐TpMe2‐degradation product, [(TpMe2Y)2(μ‐Pz)2{μ‐η13‐NC(CH2Ph)CHPh}] ( 7 , Pz=3,5‐dimethylpyrazolyl).  相似文献   

18.
Single crystals of (1,3‐diamino‐5‐azaniumyl‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)(1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)lithium(I) diiodide dihydrate, [Li(C6H16N3O3)(C6H15N3O3)]I2·2H2O or [Li(Htaci)(taci)]I2·2H2O (taci is 1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol), (I), bis(1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)sodium(I) iodide, [Na(C6H15N3O3)2]I or [Na(taci)2]I, (II), and bis(1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)potassium(I) iodide, [K(C6H15N3O3)2]I or [K(taci)2]I, (III), were grown by diffusion of MeOH into aqueous solutions of the complexes. The structures of the Na and K complexes are isotypic. In all three complexes, the taci ligands adopt a chair conformation with axial hydroxy groups, and the metal cations exhibit exclusive O‐atom coordination. The six O atoms of the resulting MO6 unit define a centrosymmetric trigonal antiprism with approximate D3d symmetry. The interligand O...O distances increase significantly in the order Li < Na < K. The structure of (I) exhibits a complex three‐dimensional network of R—NH2—H...NH2R, R—O—H...NH2R and R—O—H...O(H)—H...NH2R hydrogen bonds. The structures of the Na and K complexes consist of a stack of layers, in which each taci ligand is bonded to three neighbours via pairwise O—H...NH2 interactions between vicinal HO—CH—CH—NH2 groups.  相似文献   

19.
The two isomorphous title compounds, [1,5,9‐tris(2‐aminoethoxy)‐3,7,11‐trihydroxy‐3,7,11‐tribora‐1,5,9‐triborata‐2,4,6,8,10,12‐hexaoxa‐13‐oxoniatricyclo[7.3.1.05,13]tridecane]cobalt(II), [Co(C6H21B6N3O13)] or Co{B6O7(OH)3[O(CH2)2NH2]3}, and the NiII analogue, [Ni(C6H21B6N3O13)], each consist of an MII cation and an inorganic–organic hybrid {B6O7(OH)3[O(CH2)2NH2]3}2− anion. The MII cation lies on a crystallographic threefold axis (as does one O atom) and is octahedrally coordinated by three N atoms from the organic component. Three O atoms covalently link the B–O cluster and the organic component. Molecules are connected to one another through N—H...O and O—H...O hydrogen bonds, forming a three‐dimensional supramolecular network.  相似文献   

20.
The Crystal Structure of cis‐ and trans‐N‐iso‐Propylamidodimethyl Indium, [(CH3)2In‐N(H)iC3H7]2 According to the X‐ray structure determination [(CH3)2In‐N(H)iC3H7]2 (prepared from InMe3 (Me = CH3) and H2NiPr (iPr = CH(CH3)2) crystallizes in the monoclinic space group P21/n with 3 dimeric trans as well as 3 dimeric cis isomers per unit cell. The centrosymmetric form has a planar In2N2 core with In—N bonds of 222.1(4) and 222.9(5) pm, respectively, the skeleton of the cis isomer with In—N bonds of 221.4(4) pm is slightly folded (13.7°). Some 1H, 13C NMR, IR, and Raman data are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号