首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A flexible and convenient approach was developed for the synthesis of 10-deoxymethynolide (1) and narbonolide (2), which are aglycones of the methymycin and the pikromycin families of macrolide antibiotics. These lactones are produced by pikromycin polyketide synthase from Streptomyces venezuelae. Polyketide lactones, 10-deoxymethynolide and narbonolide, which contain 12- and 14-membered rings, respectively, were synthesized efficiently. These target lactones were retrosynthetically divided into three parts and assembled by using an asymmetric aldol reaction, the Yamaguchi esterification, and ring-closing metathesis. The ring-closing metathesis reaction catalyzed by the second-generation Grubbs catalyst is particularly efficient in preparing these macrocyclic polyketide lactones.  相似文献   

2.
An improved total synthesis of narbonolide and its biotransformation to pikromycin is reported. This total synthesis utilized an intramolecular Nozaki-Hiyama-Kishi coupling that significantly improved macrocyclization yields (90-96%) and allowed for differentiation of the C3- and C5-oxidation states. A pikAI deletion mutant of Streptomyces venezuelae was used to biotransform synthetic narbonolide to pikromycin by glycosylation and oxidation in vivo. This integration of synthetic chemistry and engineered biotransformations holds great promise for the synthesis of novel macrolide analogues of biological interest.  相似文献   

3.
[formula: see text] The appended sugars in macrolide antibiotics are indispensable to the biological activities of these important drugs. In an effort to generate a set of novel macrolide derivatives, we have created a new analogue of methymycin and neomethymycin, antibiotics produced by Streptomyces venezuelae. This analogue 15 carrying a different sugar, D-quinovose, instead of D-desosamine, was constructed by taking advantage of targeted gene deletion combined with a specific pathway-independent C-3 reduction capability of the wild type S. venezuelae.  相似文献   

4.
The enantioselective synthesis of aurisides A and B, macrolide glycosides of marine origin, was achieved by a convergent approach. The C1-C9 segment 4 was prepared from (R)-pantolactone, and the C10-C17 segment 14 was synthesized from (R)-glycidyl trityl ether. The Nozaki-Hiyama-Kishi reaction between 4 and 14 and subsequent reactions gave seco acid 10, which was converted into the aglycon (3) of aurisides by construction of the 14-membered lactone and bromine-substituted conjugated diene. The glycosylation reaction of the aglycon provided aurisides A and B.  相似文献   

5.
Complete details of a convergent asymmetric synthesis of oleandolide (1), the aglycon of the macrolide antibiotic oleandomycin, is described. The synthesis has been achieved through the assembly and coupling of the left- and right-hand subunits 12 and 38, respectively. These subunits were prepared from chiral silane-based asymmetric crotylation reactions to control the stereochemical relationships. The left- and right-hand subunits (C1-C7 and C8-C14) were brought together through a Pd(0)-catalyzed sp3-sp2 cross-coupling reaction between the zinc intermediate 40 and vinyl triflate 38 to give 27. This product was converted to seco acid 42a and cyclized to lactone 35 under Yamaguchi conditions. This material was then epoxidized with m-chloroperbenzoic acid (m-CPBA) to install the correct C8 epoxide as a single diastereomer, which after a short deprotection sequence completed the synthesis of oleandolide.  相似文献   

6.
The plasmid-based replacement of the multifunctional protein subunits of the pikromycin PKS in S. venezuelae by the corresponding subunits from heterologous modular PKSs resulted in recombinant strains that produce both 12- and 14-membered ring macrolactones with predicted structural alterations. In all cases, novel macrolactones were produced and further modified by the DesVII glycosyltransferase and PikC hydroxylase, leading to biologically active macrolide structures. These results demonstrate that hybrid PKSs in S. venezuelae can produce a multiplicity of new macrolactones that are modified further by the highly flexible DesVII glycosyltransferase and PikC hydroxylase tailoring enzymes. This work demonstrates the unique capacity of the S. venezuelae pikromycin pathway to expand the toolbox of combinatorial biosynthesis and to accelerate the creation of novel biologically active natural products.  相似文献   

7.
A series of alkyl beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosides, containing nonchiral and chiral aglycons, were synthesized and analyzed by NMR and CD. The results, collected from four sets of disaccharides, demonstrated that the rotational properties of the interglycosidic linkage depend on the structural natures of both the aglycon and the solvent. Stereoelectronic and steric factors explain this rotational dependence, the gauche- trans (gt) rotamer being the most stable. Furthermore, correlations between Taft's steric parameters or between the pKa values of the alkyl substituent (aglycon) versus corresponding rotamer populations were observed. These results point to a natural conformational domino effect in oligosaccharides, where the conformational properties of each (1-->6) interglycosidic linkage will depend on the structure of the previous residue or its aglycon. In addition, a very weak rotational population dependence of the hydroxymethyl group at residue II on the aglycon at residue I was observed. The population of the gauche- gauche (gg) rotamer decreased, and that of gt increased as the Taft's steric parameters of the remote aglycon increased, independently of the disaccharide series and of the solvent.  相似文献   

8.
Hong-Se Oh 《Tetrahedron》2010,66(24):4307-2694
Total synthesis of neomethymycin and novamethymycin has been achieved. These two macrolides contains 12-membered macrolactones as aglycones and belong to the methymycin family of antibiotics, which appears in the pikromycin biosynthetic pathway. The segments in the 12-membered macrolactone that are responsible for causing structural difference in neomethymycin and novamethymycin were synthesized by starting with methyl d-(+)-lactate and d-glucose, for neomethynolide, and for novamethynolide, respectively. The key steps in synthesis of neomethynolide and novamethynolide, which are aglycones for neomethymycin and novamethymycin, respectively, were asymmetric aldol reactions, Yamaguchi esterification, and ring-closing metathesis using Grubbs’ second generation catalyst. Finally, the coupling of agylcones with the corresponding trichloroacetimidates, followed by deprotection, completed the total synthesis of these two macrolide antibiotics.  相似文献   

9.
Neomethymycin (I) has been transformed into “anhydrocycloneomethynolide” (V) which could be degraded via (−)--methyllevulinic acid to (−)--methylsuccinic acid, thus establishing the absolute configuration of positions 4 and 6 in the lactonic acid (XIII). This acid is a common degradation product of methymycin, neomethymycin, pikromycin and narbomycin and there is thus available a standard of absolute configuration for these macrolide antibiotics. By a different sequence of reactions, erythromycin (XXIII) has been converted into (+)--methyllevulinic acid and (+)--methylsuccinic acid. Coupled with earlier results reported in the literature, it is now possible to assign absolute configurations to positions 10 (R) and 8 (R) of erythromycin and this applies most likely also to positions 4 (R) and 2 (S). Attention is called to the biogenetic significance of these observations.  相似文献   

10.
In vitro catalytic activity of DesVII, the glycosyltransferase involved in the biosynthesis of methymycin, neomethymycin, narbomycin, and pikromycin in Streptomyces venezuelae, is described. This is the first report of demonstrated in vitro activity of a glycosyltransferase involved in the biosynthesis of macrolide antibiotics. DesVII is unique among glycosyltransferases in that it requires an additional protein component, DesVIII, as well as basic pH for its full activity.  相似文献   

11.
A series of alkyl beta-D-glucopyranosyl-(1-->6)-alpha-D-glucopyranosides were synthesized and analyzed by NMR and CD techniques. As in their beta-anomer series, the rotational populations of the hydroxymethyl group involved in the interglycosidic linkage (torsion angle omega) are shown to depend on the aglycon and the solvent. However, for this alpha-anomer series the rotational dependence arises directly from steric effects. Correlations between rotational populations and molar refractivity (MR) steric parameters, but not Taft's steric parameters (beta-anomers), of the alkyl substituents were observed. The conformational domino effect previously predicted from alkyl beta-(1-->6)-diglucopyranosides is now supported by the conformational properties of their alpha-anomers, the anomeric configuration controlling the domino effect. In addition, the rotational populations around the C5'-C6' bond (torsion angle omega') depend weakly on the structure of the aglycon and the anomeric configuration.  相似文献   

12.

4-(2-Chloroethoxy)phenyl (CEP) aglycon belongs to the class of Janus aglycons and has already been used as a pre-spacer in the synthesis of neoglycoconjugates and as a temporary protective group in the synthesis of oligosaccharides. In the present work, a set of glycosides of various monosaccharides containing CEP aglycon was synthesized. The possibility of modification of CEP aglycon was demonstrated using the corresponding lactoside as an example.

  相似文献   

13.
The glycosylation of natural product scaffolds with highly modified deoxysugars is often essential for their biological activity, being responsible for specific contacts to molecular targets and significantly affecting their pharmacokinetic properties. In order to provide tools for the targeted alteration of natural product glycosylation patterns, significant strides have been made to understand the biosynthesis of activated deoxysugars and their transfer. We report here efforts towards the production of plasmid-borne biosynthetic gene cassettes capable of producing TDP-activated forms of D-mycaminose, D-angolosamine and D-desosamine. We additionally describe the transfer of these deoxysugars to macrolide aglycones using the glycosyl transferases EryCIII, TylMII and AngMII, which display usefully broad substrate tolerance.  相似文献   

14.
Teicoplanin (T) is a macrocyclic glycopeptide that is highly effective as a chiral selector for enantiomeric separations. In this study, we used three teicoplanin-based chiral stationary phases (CSPs) - native teicoplanin, teicoplanin aglycon (TAG) and recently synthesized methylated teicoplanin aglycon (MTAG). In order to examine the importance of various interaction types in the chiral recognition mechanism the three related CSPs were evaluated and compared using a linear free energy relationship (LFER). The capacity factors of 19 widely different solutes, with known solvation parameters, were determined on each of the columns under the same mobile phase conditions used for the chiral separations. The regression coefficients obtained revealed the magnitude of the contribution of individual interaction types to the retention on the compared columns under those specific experimental conditions. Statistically derived standardized regression coefficients were used to evaluate the contribution of individual molecular interactions within one stationary phase. It has been concluded that intermolecular interactions of the hydrophobic type significantly contribute to retention on all the CSPs studied here. Other retention increasing factors are n- and pi-electron interactions and dipole-dipole or dipole-induced dipole ones, while hydrogen donating or accepting interactions are more predominant with the mobile phase than with the stationary phases. However, these types of interactions are not equally significant for all the CSPs studied.  相似文献   

15.
Jin J  Chen Y  Li Y  Wu J  Dai WM 《Organic letters》2007,9(13):2585-2588
Amphidinolide Y, a 17-membered cytotoxic macrolide isolated from marine dinoflagellates, has been synthesized via ring-closing metathesis to assemble the congested trisubstituted (E)-double bond. The seco precursor was prepared from readily available chiral synthons with the tetrahydrofuran ring formed via 5-endo epoxide ring-opening cyclization. It was found that the C6-keto seco substrate showed higher reactivity toward Grubbs' second generation catalyst while Schrock's Mo catalyst was completely inactive for formation of the macrocycle.  相似文献   

16.
The total synthesis of [Ψ[C(═S)NH]Tpg(4)]vancomycin aglycon (8) and its unique AgOAc-promoted single-step conversion to [Ψ[C(═NH)NH]Tpg(4)]vancomycin aglycon (7), conducted on a fully deprotected substrate, are disclosed. The synthetic approach not only permits access to 7, but it also allows late-stage access to related residue 4 derivatives, alternative access to [Ψ[CH(2)NH]Tpg(4)]vancomycin aglycon (6) from a common late-stage intermediate, and provides authentic residue 4 thioamide and amidine derivatives of the vancomycin aglycon that will facilitate ongoing efforts on their semisynthetic preparation. In addition to early stage residue 4 thioamide introduction, allowing differentiation of one of seven amide bonds central to the vancomycin core structure, the approach relied on two aromatic nucleophilic substitution reactions for formation of the 16-membered diaryl ethers in the CD/DE ring systems, an effective macrolactamization for closure of the 12-membered biaryl AB ring system, and the defined order of CD, AB, and DE ring closures. This order of ring closures follows their increasing ease of thermal atropisomer equilibration, permitting the recycling of any newly generated unnatural atropisomer under progressively milder thermal conditions where the atropoisomer stereochemistry already set is not impacted. Full details of the evaluation of 7 and 8 along with several related key synthetic compounds containing the core residue 4 amidine and thioamide modifications are reported. The binding affinity of compounds containing the residue 4 amidine with the model D-Ala-D-Ala ligand 2 was found to be only 2-3 times less than the vancomycin aglycon (5), and this binding affinity is maintained with the model d-Ala-d-Lac ligand 4, representing a nearly 600-fold increase in affinity relative to the vancomycin aglycon. Importantly, the amidines display effective dual, balanced binding affinity for both ligands (K(a)2/4 = 0.9-1.05), and they exhibit potent antimicrobial activity against VanA resistant bacteria ( E. faecalis , VanA VRE) at a level accurately reflecting these binding characteristics (MIC = 0.3-0.6 μg/mL), charting a rational approach forward in the development of antibiotics for the treatment of vancomycin-resistant bacterial infections. In sharp contrast, 8 and related residue 4 thioamides failed to bind either 2 or 4 to any appreciable extent, do not exhibit antimicrobial activity, and serve to further underscore the remarkable behavior of the residue 4 amidines.  相似文献   

17.
A concise approach to a Neu5Ac‐α‐2,3‐LacNPhth trisaccharide derivative was developed. First, the regio/stereoselective glycosylation between glycoside donors and glucoNPhth diol acceptors was investigated. It was found that the regioselectivity depends not only on the steric hindrance of the C2‐NPhth group and the C6‐OH protecting group of the glucosamine acceptors, but also on the leaving group and protecting group of the glycoside donors. Under optimized conditions, LacNPhth derivatives were synthesized in up to 92 % yield through a regio/stereoselective glycosylation between peracetylated‐α‐galactopyranosyl trichloroacetimidate and p‐methoxyphenyl 6‐Otert‐butyldiphenylsilyl‐2‐deoxy‐2‐phthalimido‐β‐d ‐glucopyranoside, avoiding the formation of glycosylated orthoesters and anomeric aglycon transfer. Then, the LacNPhth derivative was deacylated and then protected on the primary position by TBDPS to form a LacNPhth polyol acceptor. Finally, the Neu5Ac‐α‐2,3‐LacNPhth derivative was synthesized in 48 % yield through the regio/stereoselective glycosylation between the LacNPhth polyol acceptor and a sialyl phosphite donor. Starting from d ‐glucosamine hydrochloride, the target Neu5Ac‐α‐2,3‐LacNPhth derivative was synthesized in a total yield of 18.5 % over only 10 steps.  相似文献   

18.
The unique ability of the pikromycin (Pik) polyketide synthase to generate 12- and 14-membered ring macrolactones presents an opportunity to explore the fundamental processes underlying polyketide synthesis, specifically the mechanistic details of chain extension, keto group processing, acyl chain release, and macrocyclization. We have synthesized the natural pentaketide and hexaketide chain elongation intermediates as N-acetyl cysteamine (NAC) thioesters and have used them as substrates for in vitro conversions with engineered PikAIII+TE and in combination with native PikAIII (module 5) and PikAIV (module 6) multifunctional proteins. This investigation demonstrates directly the remarkable ability of these monomodules to catalyze one or two chain extension reactions, keto group processing steps, acyl-ACP release, and cyclization to generate 10-deoxymethynolide and narbonolide. The results reveal the enormous preference of Pik monomodules for their natural polyketide substrates and provide an important comparative analysis with previous studies using unnatural diketide NAC thioester substrates.  相似文献   

19.
BACKGROUND: Modular polyketide synthases (PKSs) produce a wide range of medically significant compounds. In the case of the pikromycin PKS of Streptomyces venezuelae, four separate polypeptides (PikAI-PikAIV), comprising a total of one loading domain and six extension modules, generate the 14-membered ring macrolactone narbonolide. The polypeptide PikAIV contains a thioesterase (TE) domain and is responsible for catalyzing both the last elongation step with methylmalonyl CoA, and subsequent release of the final polyketide chain elongation intermediate from the PKS. Under certain growth conditions this polypeptide is synthesized from an alternative translational start site, giving rise to an N-terminal truncated form of PikAIV, containing only half of the ketosynthase (KS(6)) domain. The truncated form of PikAIV is unable to catalyze the final elongation step, but is able to cleave a polyketide chain from the preceding module on PikAIII (ACP(5)), giving rise to the 12-membered ring product 10-deoxymethynolide. RESULTS: S. venezuelae mutants expressing hybrid PikAIV polypeptides containing acyl carrier protein (ACP) and malonyl CoA specific acyltransferase (AT) domains from the rapamycin PKS were unable to catalyze production of 12- or 14-membered ring macrolactone products. Plasmid-based expression of a hybrid PikAIV containing the native KS(6) and TE domains, however, restored production of both narbonolide and 10-deoxymethynolide in the S. venezuelae AX912 mutant that generates a TE-deleted form of PikAIV. Use of alternative KS domains or deletion of the KS(6) domain within the hybrid PikAIV resulted in loss of both products. Plasmid-based expression of a TE domain of PikAIV as a separate polypeptide in the AX912 mutant resulted in greater than 50% restoration of 10-deoxymethynolide, but not in mutants expressing a hybrid PikAIV bearing an unnatural AT domain. Mutants expressing hybrid PikAIV polypeptides containing the natural AT(6) domains and different ACP domains efficiently produced polyketide products, but with a significantly higher 10-deoxymethynolide/narbonolide ratio than observed with native PikAIV. CONCLUSIONS: Dimerization of KS(6) modules allows in vivo formation of a PKS heterodimer using PikAIV polypeptides containing different AT and ACP domains. In such heterodimers, the TE domain and the AT(6) domain responsible for formation of the narbonolide product are located on different polypeptide chains. The AT(6) domain of PikAIV plays an important role in facilitating TE-catalyzed chain termination (10-deoxymethynolide formation) at the proceeding module in PikAIII. The pikromycin PKS can tolerate the presence of multiple forms (active and inactive) of PikAIV, and decreased efficiency of elongation by PikAIV can result in increased levels of 10-deoxymethynolide. These results provide new insight into functional molecular interactions and interdomain recognition in modular PKSs.  相似文献   

20.
Russian Chemical Bulletin - Terminal disaccharide fragment of phenolic glycolipid from Mycobacterium leprae (PGL-I) was synthesized as a glycoside with 4-(2-aminoethoxy)phenyl aglycon. The obtained...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号