共查询到20条相似文献,搜索用时 15 毫秒
1.
B. Lang A. Vierheilig E. Wiedenmann H. Buchenau G. Gerber 《Zeitschrift für Physik D Atoms, Molecules and Clusters》1997,40(1):1-4
We report on studies of multiple ionization and fragmentation of free Hgn (n ≤ 80) clusters in the femtosecond time domain at wavelengths ranging from 255 nm to 800 nm. After excitation by single laser pulses of an intensity of 5 * 1011 W/cm2 we observe prompt formation of multiply charged Hgn clusters. The Hgn cluster size distribution observed up to n ≈ 80 shows in additon to singly charged also doubly and triply charged clusters with a surprisingly high amount of doubly charged clusters. The measured cluster size distribution is nearly independent of laser wavelengths. For higher laser intensities (2 * 1012 W/cm2) we observe multiply charged mercury atoms up to Hg5+. At 1013 W/cm2 molecules and clusters eventually disappear due to Coulomb explosion and complete Fragmentation. Only atomic ions, singly and multiply charged, with high kinetic energies are then observed. 相似文献
2.
Sharma P Vatsa RK Kulshreshtha SK Jha J Mathur D Krishnamurthy M 《The Journal of chemical physics》2006,125(3):34304
We report the results of experiments that establish the possibility of bringing about multiple ionization and Coulomb explosion of molecular clusters with nanosecond laser pulses at intensities as small as 10(9) W cm(-2). We demonstrate several new facets of the laser-cluster interaction in the low-intensity, long-pulse domain: (i) The choice of laser wavelength for a given cluster species is very crucial. (ii) Excited electronic states play a very important role in the ionization dynamics. (iii) When field ionization is insignificant and ponderomotive energies are very small, it is energy pooling rather than inverse bremsstrahlung that determines how clusters absorb energy from the optical field. 相似文献
3.
Itakura R Liu P Furukawa Y Okino T Yamanouchi K Nakano H 《The Journal of chemical physics》2007,127(10):104306
Two-body Coulomb explosion with the C-O bond breaking of methanol induced by intense laser pulses with the duration of Delta t=7 and 21 fs is investigated by the coincidence momentum imaging method. When Delta t=7 fs, the angular distribution of recoil vectors of the fragment ions for the direct C-O bond breaking pathway, CH(3)OH(2+)-->CH(3) (+)+OH(+), exhibits a peak deflected from the laser polarization direction by 30 degrees -45 degrees , and the corresponding angular distribution for the migration pathway, CH(2)OH(2) (+)-->CH(2) (+)+H(2)O(+), in which one hydrogen migrates from the carbon site to the oxygen site prior to the C-O bond breaking, exhibits almost the same profile. When the laser pulse duration is stretched to Delta t=21 fs, the angular distributions for the direct and migration pathways exhibit a broad peak along the laser polarization direction probably due to the dynamical alignment and/or the change in the double ionization mechanism; that is, from the nonsequential double ionization to the sequential double ionization. However, the extent of the anisotropy in the migration pathway is smaller than that in the direct pathway, exhibiting a substantial effect of hydrogen atom migration in the dissociative ionization of methanol interacting with the linearly polarized intense laser field. 相似文献
4.
Corrales ME Gitzinger G González-Vázquez J Loriot V de Nalda R Bañares L 《The journal of physical chemistry. A》2012,116(11):2669-2677
The Coulomb explosion of CH(3)I in an intense (10-100 TW cm(-2)), ultrashort (50 fs) and nonresonant (804 nm) laser field has been studied experimentally and justified theoretically. Ion images have been recorded using the velocity map imaging (VMI) technique for different singly and multiply charged ion fragments, CH(3)(p+) (p = 1) and I(q+) (q ≤ 3), arising from different Coulomb explosion channels. The fragment kinetic energy distributions obtained from the measured images for these ion fragments show significantly lower energies than those expected considering only Coulomb repulsion forces. The experimental results have been rationalized in terms of one-dimensional wave packet calculations on ab initio potential energy curves of the different multiply charged species. The calculations reveal the existence of a potential energy barrier due to a bound minimum in the potential energy curve of the CH(3)I(2+) species and a strong stabilization with respect to the pure Coulombic repulsion for the higher charged CH(3)I(n+) (n = 3, 4) species. 相似文献
5.
Huang J Wu C Xu N Liang Q Wu Z Yang H Gong Q 《The journal of physical chemistry. A》2006,110(34):10179-10184
Field-induced alignment of O2 and N2 was experimentally studied with laser intensities varying from 10(13) to 10(15) W/cm2. When the laser intensity was below the ionization threshold for these molecules, the interaction between the induced dipole moment of molecules and the laser electric field aligned the molecules along the laser polarization direction. After extinction of the exciting laser, the transient alignment revived periodically. Thus macroscopic ensembles of highly aligned O2 and N2 molecules were obtained under field-free conditions. When the laser intensity exceeded the ionization threshold for these molecules, multielectron ionization and Coulomb explosion occurred. Using two linearly polarized laser pulses with crossed polarization, we demonstrated that the rising edge of the laser pulse aligned the molecules along the laser polarization direction prior to ionization, which resulted in strong anisotropic angular distributions of exploding fragments. These results suggest that the degree of alignment should be taken into account when qualitatively comparing the ion yield of these molecules with their companion atoms. 相似文献
6.
Yazawa H Shioyama T Suda Y Kannari F Itakura R Yamanouchi K 《The Journal of chemical physics》2006,125(18):184311
The dissociative ionization of ethanol in short-pulsed laser fields at approximately 400 nm is investigated. The yield ratio of the C-O bond breaking with respect to the C-C bond breaking increases sharply as the temporal width increases from 60 to 400 fs, and the yield ratio is two to three times as large as that at 800 nm in the entire pulse-width range of 60-580 fs. The enhancement of the C-O bond breaking of singly charged ethanol at 400 nm and the bond elongation prior to the Coulomb explosion of doubly charged ethanol occurring in the relatively weak light field intensity of 10(12)-10(13) W cm(2) is interpreted by the efficient light-induced coupling among the electronic states at the shorter wavelength of 400 nm. From the double pulse experiment, in which ethanol is irradiated with a pair of short pulses (<80 fs), the most efficient coupling occurs at Deltat=160 fs that is much earlier than Deltat=250 at 800 nm, where Deltat denotes the temporal separation of the two pulses, indicating that the nonadiabatic field-induced potential crossings of singly charged ethanol occurs much earlier at 400 nm than at 800 nm. 相似文献
7.
Measurements have been made of optical field-induced ionization and fragmentation of methane molecules at laser intensities in the 10(16) W cm(-2) range using near transform limited pulses of 100 fs duration as well as with chirped pulses whose temporal profiles extend up to 1500 fs. Data is taken both in constant-intensity and constant-energy modes. The temporal profile of the chirped laser pulse is found to affect the morphology of the fragmentation pattern that is measured. Besides, the sign of the chirp also affects the yield of fragments like C2+, H+, and H2+ that originate from methane dications that are formed by optical field-induced double ionization. 相似文献
8.
Y. -L. Shao V. Zafiropulos A. P. Georgiadis C. Fotakis 《Zeitschrift für Physik D Atoms, Molecules and Clusters》1991,21(4):299-305
Single and double ionization of magnesium and calcium atoms following Nd: YAG laser multiphoton excitation at 1064 and 532 nm have been studied by employing pulses of 35 ps and 200 ps duration at intensities of the order of 1010–2×1013 W/cm2. The dependence of ion formation on the laser intensity has been measured and the slopes of the linear parts of the log-log plots and the ratios of saturation intensities for two pulse durations have been compared with the predictions of the scaling law. No evidence for a pure direct double ionization process has been obtained. 相似文献
9.
Yatsuhashi T Ichikawa S Shigematsu Y Nakashima N 《Journal of the American Chemical Society》2008,130(46):15264-15265
The five and possibly seven-photon fluorescence was observed for organic molecules in solution for the first time. A high-intensity laser enabled us to measure the properties of the high and any-order processes, and the emission could be directly visualized by the eye. These results showed that the common two-photon microscope could be upgraded to the higher order multiphoton microscope by choosing suitable excitation wavelengths. The multiphoton absorption cross sections differed by a factor of 10(33) as the order of the multiphoton process increased. 相似文献
10.
Mohammad R. Kasaai Joseph Arul See L. Chin Grard Charlet 《Journal of photochemistry and photobiology. A, Chemistry》1999,120(3):3607-205
The use of ultrashort laser pulses for the fragmentation of chitosan was investigated. Femtosecond Ti-saphire laser pulses were focused into a flask containing 1.0% chitosan in 0.1 M acetic acid. The effects of the pulse energy (between 0.1 and 0.82 mJ) and the focal length on the laser-induced fragmentation were followed by viscometry and size exclusion chromatography. The chemical structure and degree of acetylation of chitosan and its fragments were studied using elemental analysis, IR and 1H NMR spectroscopy. The experimental results showed that (i) Ti-saphire laser irradiation induced chain scission in the chitosan macromolecules, (ii) the chemical structure, including the degree of acetylation, did not change significantly upon laser irradiation, (iii) the number of chain scission dependence on laser energy suggests that fragmentation was a two-photon process, and (iv) at constant pulse energy, the molecular weight dropped to a minimum as a function of the focal length (between 45 and 330 mm), indicating that the efficiency of fragmentation was very sensitive to the geometry of the laser beam. 相似文献
11.
This paper presents results obtained in a study of collinear geometry double pulse femtosecond LIBS analysis of solids in ambient environment. LIBS signal enhancement of 3–10 fold, accompanied by significant improvement of signal reproducibility, in comparison with the single pulse case, has been found in different samples such as brass, iron, silicon, barium sulfate and aluminum when an optimum temporal separation between the two ablating pulses is used. The influence of the delay between pulses in the LIBS signal intensity was investigated and two intervals of interaction were established. A first transient regime from 0 to 50 ps, in which the LIBS signal increases until reaching a maximum, and a second regime that ranges from 50 to 1000 ps (maximum inter-pulse delay investigated) in which the signal enhancement remains constant. Emissions from both ionized and neutral atoms show the same pattern of enhancement with a clear tendency of lines arising from higher energy emissive states to exhibit higher enhancement factors. 相似文献
12.
Desorption of C 60 (+) and its dimer cation was investigated on irradiation with nonresonant femtosecond laser pulses at 1.4 mum. Ionization of solid C 60 revealed strikingly different features, such as the absence of multiply charged molecular ions, the emission of C (+) at low laser intensity, C 2 attachments, delayed ionization, and dimer cation formation, as compared with the gas phase experiments. The large kinetic energy distribution of ions found in this study indicated that the desorption process was mainly driven by an electrostatic mechanism rather than by thermal, photochemical, or volume expansion mechanisms. Singly charged C 60 emission by a Coulomb explosion due to the high density of C 60 (+) is suggested. 相似文献
13.
Yang Y Fan L Sun S Zhang J Chen Y Zhang S Jia T Sun Z 《The Journal of chemical physics》2011,135(6):064303
The dissociative double ionization and multi-photon ionization of 1-bromo-2-chloroethane (BCE) irradiated by the 800 nm femtosecond laser field have been investigated by dc-slice imaging technology. The charged parent ion ratio [BCE(2+)]/[BCE(+)] was measured, and the corresponding ionization process including non-sequential double ionization and sequential double ionization was analyzed. The sliced images of different photo-dissociated ions were detected, and the corresponding kinetic energy release (KER) distributions were calculated and extracted. Furthermore, the dissociative double ionization channels, attributed to the cleavage of the C-C, C-Br, and C-Cl bonds by the Coulombic repulsive forces, were discussed, and the revised equilibrium distance R(e)*, the energy ratio E(exp)/E(coul), and the value a=√(R(e)*)/(E(exp)/E(coul)) were calculated. 相似文献
14.
Döppner T Diederich T Przystawik A Truong NX Fennel T Tiggesbäumker J Meiwes-Broer KH 《Physical chemistry chemical physics : PCCP》2007,9(33):4639-4652
We review the strong field (10(13)-10(16) W cm(-2)) laser excitation of metal clusters (Cd(N), Ag(N) and Pb(N)) embedded in He nanodroplets. Plasmon enhanced ionization obtained by stretching the laser pulses to several hundreds of femtoseconds or by using dual pulses with a suitable optical delay leads to a Coulomb explosion of highly charged atomic ions. The charging dynamics can be well described by corresponding semiclassical Vlasov simulations. The influence of the He environment on the ionization process and on the final charge distribution is discussed. Evidence is found that He(2+) is generated in collisions with highly charged metal ions. In contrast, singly and doubly charged ions with low recoil energies induce the formation of He snowballs with a distinct shell structure around the ion. Laser intensity thresholds for snowball formation and for the ionization of clusters are investigated by applying intensity selective scanning. 相似文献
15.
The possibility to perform a stimulated Raman adiabatic passage process in molecules on the ultrafast time scale is investigated theoretically. Motivated by recent experiments, the mid R:B<--mid R:X electronic transitions in molecular iodine are studied as a prototype example with the goal to selectively induce a population transfer employing two intense and time-delayed ultrashort laser pulses and different coupling schemes. For the purpose of interpretation, the coupled multilevel vibronic problem is reduced to a quasi-three-level system by averaging over the vibrational degree of freedom. It is shown that the vibrational dynamics becomes essential at high field intensities. Considering a 2-dimensional parameter space (intensity and delay time of the femtosecond laser pulses), a strong-field control landscape is constructed. 相似文献
16.
The Coulomb explosion dynamics of N2O in intense laser fields (800 nm, 60 fs, approximately 0.16 PWcm2) is studied by the coincidence momentum imaging method. From the momentum correlation maps obtained for the three-body fragmentation pathway, N2O3+-->N++N++O+, the ultrafast structural deformation dynamics of N2O prior to the Coulomb explosion is extracted. It is revealed that the internuclear N-N and N-O distances stretch simultaneously as the bond angle less than approximately N-N-O decreases. In addition, two curved thin distributions are identified in the momentum correlation maps, and are interpreted well as those originating from the sequential dissociation pathway, N2O3+-->N++NO2+-->N++N++O+. 相似文献
17.
Yazawa H Shioyama T Suda Y Yamanaka M Kannari F Itakura R Yamanouchi K 《The Journal of chemical physics》2007,127(12):124312
Ethanol molecules were irradiated with a pair of temporally overlapping ultrashort intense laser pulses (10(13)-10(14) Wcm(2)) with different colors of 400 and 800 nm, and the dissociative ionization processes have been investigated. The yield ratio of the C-O bond breaking with respect to the C-C bond breaking was varied in the range of 0.17-0.53 sensitively depending on the delay time between the two laser pulses, and the absolute value of the yield of the C-O bond breaking was found to be increased largely when the Fourier-transform limited 800 nm laser pulse overlaps the stretched 400 nm laser pulse, demonstrating an advantage of the two-color intense laser fields in controlling chemical bond breaking processes. 相似文献
18.
We introduce a theoretical framework for study of three-dimensional alignment by moderately intense laser pulses and discuss it at an elementary level. Several features of formal interest are noted and clarified. Our approach is nonperturbative, treating the laser field within classical and the material system within quantum mechanics. The theory is implemented numerically using a basis set of rotational eigenstates, transforming the time-dependent Schrodinger equation to a set of coupled differential equations where all matrix elements are analytically soluble. The approach was applied over the past few years to explore different adiabatic and nonadiabatic three-dimensional alignment approaches in conjunction with experiments, but its formal details and numerical implementation were not reported in previous studies. Although we provide simple numerical examples to illustrate the content of the equations, our main goal is to complement previous reports through an introductory discussion of the underlying theory. 相似文献
19.
20.
Sequential ionization of the C(60) fullerene to high charge states in ultrashort intense laser pulses is investigated within the strong-field S-matrix approach. Ion yields are calculated and saturation intensities are determined for a broad range of laser wavelengths between 395 and 1800 nm at different pulse lengths. Comparisons of the S-matrix predictions for the saturation intensities with recent experimental data are in an overall satisfactory agreement, indicating that saturation of ionization of this complex molecule can be well described using the single-active-electron approach. The analysis of the results shows that the contributions from the h(u)-highest occupied molecular orbital to the ion yields dominate as compared to those from the inner valence shells h(g) and g(g). Finally, it is demonstrated that the suppression of ionization of C(60) and its ions, as observed in experiments, can be interpreted within the present theory as due to the finite cage size of the fullerenes and a multi-slit-like interference effect between partial waves emitted from the different nuclei of the fullerenes. 相似文献