首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Foam superstabilization by polymer microrods   总被引:4,自引:0,他引:4  
Few foam systems stabilized by solid particles have been reported, and usually the particles have been used in combination with surfactants. We report how foams can be stabilized solely with a new class of anisotropic particles, hydrophobic polymer microrods of diameter less than 1 mum and length of a few tens of micrometers. The obtained foams were extraordinary stable, retaining a constant volume over many days and even surviving drying of most of the free liquid. The bubbles in these foams were sterically stabilized by dense thick "hairy" layers. The rigid intertwined protective shells around the bubbles did not allow the formation of thin films between them. The lifetime of these foams was orders of magnitude longer than the ones stabilized with typical foaming surfactants such as sodium dodecyl sulfate. The addition of sodium dodecyl sulfate led to hydrophilization of the microrods and suppressed the superstabilization effect. Thus, common foaming agents effectively act as defoamers for the ultrastable foams stabilized by microrods.  相似文献   

2.
This article summarizes our recent understanding on how various essential foam properties could be controlled (viz. modified in a desired way) using appropriate surfactants, polymers, particles and their mixtures as foaming agents. In particular, we consider the effects of these agents on the foaminess of solutions and suspensions (foam volume and bubble size after foaming); foam stability to liquid drainage, bubble coalescence and bubble Ostwald ripening; foam rheological properties and bubble size in sheared foams. We discuss multiple, often non-trivial links between these foam properties and, on this basis, we summarize the mechanisms that allow one to use appropriate foaming agents for controlling these properties. The specific roles of the surface adsorption layers and of the bulk properties of the foaming solutions are clearly separated. Multiple examples are given, and some open questions are discussed. Where appropriate, similarities with the emulsions are noticed.  相似文献   

3.
Foamability, liquid holdup, and foam appearance are key factors that determine dust control efficiencies. As the foam production method of the FoamScan instrument is similar to foaming device used for dust control, and its measurement means can satisfy the requirements of precise measuring, the FoamScan technology is adopted to explore the influence of xanthan gum (XG) and partial hydrolytic polyacrylamide (HPAM) on dust-related foam properties of sodium dodecyl benzene sulfonate (SDBS). It was found that with the increase of the polymer mass fraction, the liquid volume in the foam gradually increased. Additionally, the foaming time t200 of the foaming agent decreased at first, then remained almost constant for both polymers, which indicated that the foamability and liquid holdup were enhanced by the addition of polymers into SDBS. In addition, the efficiencies of XG are higher than that of HPAM. The image analysis using the CSA software revealed that the mean radius formed by XG was smaller than that by HPAM and the number of bubbles was larger with XG than with HPAM. Thus, the XG foam has more area to contact with dust and could control dust better. The highly branched molecular structure and hydrogen bonds formed by XG played important roles in dust-related foam properties.  相似文献   

4.
The foam performances of 3‐dodecoxy‐2‐hydroxypropyl trimethylammonium chloride (C12TAC) have been determined in the existence of different relative amount of polymer. The experimental results show that the foaming ability of the mixture systems of the C12TAC/PEG and C12TAC/PVP is stronger than that of the surfactant solutions in the absence of polymer, and with the increase of relative amount of polymer both foaming efficiency and foam stability of the surfactant solutions are evidently enhanced. For the aqueous solution of the surfactant, effect of temperature on foaming properties has also been examined. The results show that both the foaming ability and stability of the foams of the surfactant solutions are highest (or strongest) at 30°C.  相似文献   

5.
Zeta potential measurement for air bubbles in protein solutions   总被引:1,自引:0,他引:1  
Protein adsorption at gas-liquid interfaces is important in a number of processes including foam formation in bioreactors, foam fractionation for protein recovery, and production of protein based food and drinks. The physical properties of the gas-liquid interface will influence foam stability; important properties will include both surface rheological and electrokinetic properties. While surface rheological properties of gas-protein solution interfaces have been reported, there are no published values for electrokinetic properties at such interfaces. In this paper, zeta potential values of gas bubbles in solutions of three proteins, measured using a microelectrophoresis technique, are reported. The three proteins chosen were BSA, beta-casein, and lysozyme; these proteins have all been used previously in protein foaming studies. The effect of protein concentration and ionic strength is considered. For BSA and beta-casein, zeta potential was found to increase with increasing protein concentration and ionic strength. For air bubbles in lysozyme solutions, measured zeta potential was zero. zeta potential values for air bubbles in some binary protein mixtures are also presented.  相似文献   

6.
This experimental work deals with rheological properties of aqueous foams and slip phenomena. Rheological measurements are performed on a stable foam with a parallel plate rheometer. When a constant shear rate is applied to foam, two regimes can be identified in the recorded stress vs time curve: a transient regime where the structure evolves and where the recorded stress varies, followed by a steady state regime where the stress is stabilized. Measurements, modeling, and elimination of the slip velocity are performed. Experiments with grooved surfaces allow elimination of slip at the wall. From measurements at two gaps with smooth surfaces, we use two slip correction methods and check their validity by a direct comparison with actual measurements (with grooved surfaces). A foam rheological equation can be determined from the measurements. Finally, using an optical device coupled with image analysis software, foam texture is investigated on the basis of its evolution with shear rate and time. Evolution of the bubbles size and arrangement into the gap with time of shearing are shown. The transient regime is identified as a regime where the intimate structure of the foam evolves. Slip velocity is also evidenced and measured with the visualization device.  相似文献   

7.
In this paper we describe the magnetorheological (MR) behavior of aqueous suspensions consisting of magnetite particles stabilized by poly(acrylic acid) polymers (PAA). A previous work on the colloidal stability of the same systems for different pH values and polymer concentrations demonstrated that the addition of PAA polymers has a very significant effect on the stability. In the present contribution, we study the MR effect of the suspensions stabilized by two different commercial polymers, as a function of pH, magnetic field strength and magnetite volume fraction. All the results are discussed in terms of the interfacial properties of the systems. It is demonstrated that for a given concentration of micrometer particles, the rheological response strongly depends on pH, on the volume fraction of magnetite particles, on the type of polymer added for increasing the stability and on the magnetic field strength. Changing the polymer used provokes clear rheological differences for the same sample conditions (field strength, volume fraction and pH). This is suggested to be due to the hydrophobic/hydrophilic balance of the polymer affecting the magnetic field ability to form magnetic structures by aggregation of the magnetized particles. The results are compared to the predictions of the so-called standard chain model, based on the assumption that the MR effect is the result of the balance between the magnetic interactions (tending to establish some degree of order in the suspension by formation of particle chains in the direction of the field) and hydrodynamic ones (tending to destroy the formed structures by viscous stress on the chains). It is found that the behavior of the yield stress does not agree well with the predictions of the model when the relative proportion of both particle and polymer confers optimum stability to the dispersions. This is likely due to the fact that the presence of the stabilizing polyelectrolyte provokes that the magnetic field is not as effective in structuring the suspension as deduced from the chain model.  相似文献   

8.
Foamed poly(vinyl alcohol) (PVA) cryogels are studied. Such heterogeneous gel composites are formed as a result of the cryogenic treatment (freezing—storage in a frozen state—thawing) of water— PVA liquid foams in the absence and presence of surfactants. It is shown that the addition of ionic and nonionic surfactants to an aqueous PVA solution and its subsequent foaming result in the formation of liquid foam whose stability is lower than that of the foam prepared from an aqueous PVA solution in the absence of surfactant, i.e., surfactants cause a destabilizing effect on the foams containing PVA. Gas-filled PVA cryogels formed as a result of freezing—thawing of such foams contain large (up to ~180 μm) pores (air bubbles incorporated into the matrix of heterogeneous gel). Mechanical and thermal properties of cryogels depend on the nature and concentration of surfactants, as well as on the regime of cryogenic treatment. The rigidity of foamed PVA cryogels prepared in the presence of sodium dodecyl sulfate and cetyltrimethylammonium bromide ionic surfactants is lower and that in the presence of nonionic decaoxyethylene cetyl ether is higher than for equiconcentrated (by the polymer) foamed PVA cryogel containing no surfactant. Microscopic studies and the analysis of obtained images of cryogel structure demonstrate that the effect of surfactant on the morphology of freezing foam can be different, depending on the type of surfactant added to the initial system. This leads to foam-destabilizing effects such as the collapse, deformation, and coalescence of air bubbles; the failure of gel phase structure near the bubble surface; etc. However, the complete disintegration of the foamed structure is prevented by a very high viscosity of the unfrozen liquid microphase of a macroscopically solid sample and by the cryotropic PVA gelation that fixes the structure of partially destroyed foam.  相似文献   

9.
Nonaqueous foams stabilized by lamellar liquid crystal (L alpha) dispersion in diglycerol monolaurate (designated as C12G2)/olive oil systems are presented. Foamability and foam stability depending on composition and the effects of added water on the nonaqueous foaming behavior were systematically studied. It was found that the foamability increases with increasing C12G2 concentration from 1 to 3 wt% and then decreases with further increasing concentration, but the foam stability increases continuously with concentration. Depending on compositions, foams are stable for a few minutes to several hours. Foams produced by 10 wt% C12G2/olive oil system are stable for more than 6 h. In the study of effects of added water on the foaming properties of 5 wt% C12G2/olive oil system, it was found that the foamability and foam stability of 5 wt% C12G2/olive oil decreases upon addition of 1 wt% water, but with further increasing water, both the foamability and foam stability increase. Foams with 10% water added system are stable for approximately 4 h. Phase behavior study of the C12G2 in olive oil has shown the dispersion of L alpha particles in the dilute regions at 25 degrees C. Thus, stable foams in the C12G2/olive oil system can be attributed to L alpha particle, which adsorb at the gas-liquid interface as confirmed by surface tension measurements and optical microscopy. Laser diffraction particle size analyzer has shown that the average particle diameter decreases with increasing the C12G2 concentration and, hence, the foams are more stable at higher surfactant concentration. Judging from foaming test, optical micrographs, and particle size, it can be concluded that stable nonaqueous foams in the studied systems are mainly caused by the dispersion of L alpha particles and depending on the particle size the foam stability largely differs.  相似文献   

10.
Foams stabilized by nonionic surfactants are usually moderately stable due to high drainage rate and intense bubble coalescence and coarsening. This study aimed to investigate comparatively the foam properties of aliphatic alcohols (methyl isobutyl carbinol (MIBC) and 2-octanol) and polypropylene glycol (PPG400). Experiments were conducted using the FoamScan method at various surfactant concentrations and gas flow rates where the foam volume, liquid content of foam and foam half-life were determined. The results showed that both foamability and foam stability of surfactant solution increased with increasing gas flow rate and surfactant concentration for all tested surfactants. PPG400 was an unusually strong surfactant having the largest surface activity compared with MIBC and 2-octanol, which exhibited the maximum foaming performance and foam stability at all tested gas flow rates and concentrations. The present study suggested that foam properties depended primarily on the type of surfactant and its concentration and secondarily on the gas flow rate. In addition, properties of interface are closely related to that of foam, which is a significant point if one wants to produce foams for specific applications.  相似文献   

11.
Metallocene-based polyolefin (MPO) foams are being considered for a wide range of applications because of their uniform composition and low toxicity. In this study, stress relaxation and dynamic rheological experiments are used to probe the effects of oxidative irradiation on the structure and final properties of these novel MPO foams. Experiments conducted on irradiated foams of two different densities reveal significantly different behavior. Gamma irradiation of the lighter foam causes structural degradation due to chain scission reactions. This is manifested in faster stress relaxation rates and lower values of elastic moduli and gel fraction in the irradiated samples. The incorporation of O2 into the polymer backbone, verified by FTIR analysis, confirms the hypothesis of chain scission occurring at the labile peroxide linkages. In contrast, the denser foam shows a small amount of cross-linking and a concomitant improvement in mechanical properties after oxidative irradiation.  相似文献   

12.
Several new foaming agent formulations (surfactants and polymers) in the presence of multi-walled carbon nanotube (MWCNT) were developed in 3% salinity (NaCl, 2.4?wt%, CaCl2, 0.6?wt%). The dispersion stability of the MWCNT and the viscosity of the solutions were examined as a prerequisite for reservoir applications. Foam was generated in situ and one-dimensional flow-through tests were performed by co-injecting air and foaming solution either in the presence of MWCNT or at particle-free condition. The pressure drop (Δp) across the sand-pack and the nanoparticles breakthrough were closely monitored. The fluid injection rate, gas fraction, and the effect of MWCNT on foams in porous media were investigated.

Our results reveal that foams stabilized by the selected nanoparticles are capable of generating stronger foams leading to higher apparent Δp. The Δp profile varies with gas fraction, which largely affects the foam texture and quality. Also, the viscosity of foaming agent solutions influences Δp values. Adding MWCNT to the foaming agent solutions appears beneficial to the flooding as surfactants adsorption onto nanoparticle surfaces, which facilitates surfactants partitioning to the G/L interface.

Addition of nanoparticles in the developed foam formulations leads to the formation of high-quality stronger foams in porous media, which could potentially improve the sweep efficiency and increase the oil recovery.  相似文献   

13.
Bio‐based foams are the solution to environmental concerns raised by petrochemical‐based open cell foams used in various industries for sound absorption. While conventional petrochemical‐based polymers take centuries to degrade or may not degrade at all, bio‐based polymers decompose to biomass, water, and carbon dioxide in a matter of months when exposed to proper environment. To increase the potential of replacing current petrochemical foams, mechanical as well as acoustic characteristics of bio‐based foams need to be improved. This article studies the effect of blending two bio‐based polymers and physics of the blends on acoustic and mechanical properties of resulting polymer composite foams. Different blends of polylactide with three grades of polyhydroxyalkanoates were foamed and characterized based on acoustic and mechanical performance. Rheological properties of pure polymers as well as their blends were studied and effect of polymer blends on acoustic absorption of the resulting foams was investigated. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1002–1013  相似文献   

14.
Green and renewable foaming poly(lactic acid) (PLA) represents one of the promising developments in PLA materials. This study is the first to use the lignin graft PLA copolymer (LG‐g‐PLA) to improve the foamability of PLA as a biobased nucleating agent. This agent was synthesized via ring‐opening polymerization of lignin and lactide. The effects of LG‐g‐PLA on cell nucleation induced by the crystallization, rheological behavior, and foamability of PLA were evaluated. Results indicated that LG‐g‐PLA can improve the crystallization rate and crystallinity of PLA, and play a significant nucleation role in the microcellular foam processing of PLA. LG‐g‐PLA improved the foam morphology of PLA, obtaining a reduced and uniform cell size as well as increased expansion ratio and cell density. With the addition of 3 wt% LG‐g‐PLA content, the PLA/LG‐g‐PLA foams increased the compressive strength 1.6 times than that of neat PLA foams. The improved foaming properties of PLA via a biobased nucleating agent show potential for the production and application of green biodegradable foams.  相似文献   

15.
Stimuli-responsive liquid foams and bubbles are systems for which the stability, structure, shape, and movement can be controlled by the application of stimuli. The foam stability can be modified by a stimulus which can change solution condition (pH, temperature, and ionic strength) or with the application of an external field (light and magnetic). Different foam stabilizers have been described in the literature to design these responsive foams systems ranging from surfactants, peptides, polymers, soft polymer particles, surfactants self-assembly, crystalline particles, emulsion droplets, and solid particles. This review aims to cover the recent advances of the design of stimuli-responsive liquid foams and their applications. Responsive liquid foams are attractive in textile coloring process, biomedical application, washing, and material recovery processes.  相似文献   

16.
Liquid foam exhibits remarkable rheological behavior although it is made with simple fluids: it behaves similar to a solid at low shear stress but flows similar to a liquid above a critical shear stress. Such properties, which have been proved to be useful for many applications, are even enhanced by adding solid particles. Depending on their hydrophobicity and size, the particles can have different geometrical configurations at the mesoscopic scale, that is, at the air–liquid interfaces, in the films, or in the interstices between the bubbles. In this review, we present rheological studies performed on granular rafts and films, on spherical armored interfaces, on gas marbles, and on aqueous foams laden with hydrophilic grains.  相似文献   

17.
Remarkable properties have emerged recently for aqueous foams, including ultrastability and responsiveness. Responsive aqueous foams refer to foams for which the stability can be switched between stable and unstable states with a change in environment or with external stimuli. Responsive foams have been obtained from various foam stabilizers, such as surfactants, proteins, polymers, and particles, and with various stimuli. Different strategies have been developed to design this type of soft material. We briefly review the two main approaches used to obtain responsive foams. The first approach is based on the responsiveness of the interfacial layer surrounding the gas bubbles, which leads to responsive foams. The second approach is based on modifications that occur in the aqueous phase inside the foam liquid channels to tune the foam stability. We will highlight the most sophisticated approaches, which use light, temperature, and magnetic fields and lead to switchable foam stability.  相似文献   

18.
Whipped foams (10%, w/v protein, pH 7.0) were prepared from commercially available samples of whey protein isolate (WPI) and egg white protein (EWP), and subsequently compared based on yield stress (τ0), overrun and drainage stability. Adsorption rates and interfacial rheological measurements at a model air/water interface were quantified via pendant drop tensiometry to better understand foaming differences among the ingredients. The highest τ0 and resistance to drainage were observed for standard EWP, followed by EWP with added 0.1% (w/w) sodium lauryl sulfate, and then WPI. Addition of 25% (w/w) sucrose increased τ0 and drainage resistance of the EWP-based ingredients, whereas it decreased τ0 of WPI foams and minimally affected their drainage rates. These differing sugar effects were reflected in the interfacial rheological measurements, as sucrose addition increased the dilatational elasticity for both EWP-based ingredients, while decreasing this parameter for WPI. Previously observed relationships between τ0 and interfacial rheology did not hold across the protein types; however, these measurements did effectively differentiate foaming behaviors within EWP-based ingredients and within WPI. Interfacial data was also collected for purified β-lactoglobulin (β-lg) and ovalbumin, the primary proteins of WPI and EWP, respectively. The addition of 25% (w/w) sucrose increased the dilatational elasticity for adsorbed layers of β-lg, while minimally affecting the interfacial rheology of adsorbed ovalbumin, in contrast to the response of WPI and EWP ingredients. These experiments underscore the importance of utilizing the same materials for interfacial measurements as used for foaming experiments, if one is to properly infer interfacial information/mechanisms and relate this information to bulk foaming measurements. The effects of protein concentration and measurement time on interfacial rheology were also considered as they relate to bulk foam properties. This data should be of practical assistance to those designing aerated food products, as it has not been previously reported that sucrose addition improves the foaming characteristics of EWP-based ingredients while negatively affecting the foaming behavior of WPI, as these types of protein isolates are common to the food industry.  相似文献   

19.
Poly(ϵ-caprolactone) was chemically modified by using dicumyl peroxide from 0.25 to 2 % (w/w) and the effects of molecular architecture on the density and morphology of PCL foams were examined. The polymer was first blended with dicumyl peroxide at a low temperature (80°C), to prevent premature peroxide decomposition. The peroxide modification was then performed at different temperatures, from 110°C to 150°C. The reaction kinetic was followed by measuring the dynamical rheological properties of the melt in isothermal experiments by using a parallel plate rheometer. The evolution of the macromolecular structure during the chemical reaction was followed by analyzing the time evolution of the complex viscosity. Foams were prepared from the peroxide modified PCL with a batch foaming process using nitrogen as the foaming agent under different process conditions. As expected, the increase of the molecular modification led to a shift towards higher temperatures of the foaming window and, moreover, influenced the viscoelastic behavior of the expanding polymeric matrix so that the final foam properties are affected.  相似文献   

20.
A constitutive model for evaluating the compressive behavior of Poly(methyl‐methacrylate) (PMMA) open‐cell foams is herein proposed. Specifically, the study investigates the viscoelastic and viscoplastic behaviors of the PMMA open‐cell foams. The constitutive equation is expressed in terms of the following polymer and foam properties: elastic modulus, relative density, as well as the relaxation and densification constants. PMMA open‐cell foams are manufactured using a gas foaming/particulate leaching method and uniaxial compression tests are performed. The mechanical properties and compressive stress‐strain responses obtained from the experiments are compared with those predicted by the proposed constitutive model. The results suggest that the constitutive model is an apt one for assessing and evaluating the compressive behaviors of PMMA open‐cell foams. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 436–443, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号