首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 216 毫秒
1.
Approximate analytical formulae describing the energy variation of line intensities, autoionization widths and lineshape asymmetries, are derived for a Phase-Shifted Multichannel Quantum Defect Theory model composed of two closed interacting channels coupled to two effective continua. This is accomplished by putting the two compatibility equation solutions, for the common phase shifts of the two open channels, in such a form so the resonant behavior is attributed to one of them, the other accounting for an energy dependent background. Then, the well-known procedures for the simpler case where only one continuum is considered are applied, using only the resonant solution. The method is quite general and applicable to any MQDT model with two or more open channels. The resulting analytical formulae are tested on experimental spectra of Sr, Ba and Cu and it is shown that they are valid as long as: i) The resonances are non-overlapping, ii) The direct closed channel coupling is much stronger than the indirect one through the continua and (when excitation matrix elements are involved) iii) The open channels excitation strength is smaller or at least comparable to the closed channels one. Received: 26 May 1998 / Accepted: 1st July 1998  相似文献   

2.
We present a semiclassical analysis of the dynamics of Rydberg states of atomic hydrogen driven by a resonant microwave field of linear polarization. The semiclassical quasienergies of the atom in the field are found to be in very good agreement with the exact quantum solutions. The ionization rates of individual eigenstates of the atom dressed by the field reflect their quasiclassical dynamics along classical periodic orbits in the near integrable regime, but exhibit a transition to nonspecific rates when global chaos takes over in phase space. We concentrate both on the principal resonance where the unperturbed Kepler frequency is equal to the driving field frequency and on the higher primary resonance The latter case allows for the construction of nondispersive wave packets which propagate along Kepler ellipses of intermediate eccentricity. Received: 23 June 1998 / Accepted: 10 November 1998  相似文献   

3.
We report the even parity J =4,5 autoionizing spectra of calcium below the 3d threshold, investigated by two-step laser excitation from the 3d4s metastables through the 3d4p , intermediate states and subsequent optogalvanic detection. The 3d4s states are populated by electronic collisions in a d.c. glow discharge sustained in a Ca heat-pipe. More than a hundred resonant transitions have been measured with an accuracy of for the narrow ones using standard laser calibration techniques. The high lying levels are assigned to all expected autoionizing series. Moreover, some levels are observed. The theoretical interpretation is achieved by a combination of the nearly ab initio eigenchannel R-matrix and multichannel quantum-defect (MQDT) methods as well as by an empirical determination of the MQDT parameters in the phase-shifted formulation. Theoretical energy level positions and excitation profiles are compared with the experimental data confirming the identification of the observed structures. Strong mixing between series is found, while the ones do not couple with the series. Further insight into the strong channel mixing in the studied energy range is provided by a comprehensive review of the excitation profiles in the vicinity of the 4p5p perturber as obtained from a number of intermediate levels used in the present and in earlier experiments. Systematic electron correlation trends for series of , and are discussed. Received: 20 November 1997 / Accepted: 15 January 1998  相似文献   

4.
Low resolution features in the spectra of classically chaotic atomic and molecular systems are known to be related to recurrences induced by classical periodic motions. In this paper we study how such characteristics reveal in the LiNC/LiCN isomerizing molecular system, and describe how the transition from regularity to classical chaos that takes place in this system shows up at quantum level in the structure of the corresponding wavefunctions in the form of “scars”. To this end we use some projection techniques, based on the propagation of wave packets, which have been developed in our laboratory. In this way some regions at the border of the chaotic region can be detected, in which the systematics of “scar” formation can be studied at a very elementary level, without complications due to the high level density which are customarily used in this type of studies in order to achieve the semiclassical limit. Received: 16 March 1998 / Revised: 23 April 1998 / Accepted: 4 May 1998  相似文献   

5.
The interaction of a sequence of two identical ultrashort laser pulses with an atomic system results in quantum interferences as in Ramsey fringes experiments. These interferences allow achievement of temporal coherent control of the excitation probability. We present the results of a temporal coherent control experiment on two different atomic systems: one-photon absorption in K (4s-4p) and two-photon absorption in Cs (6s-7d). In K, the quantum interferences between the two excitation paths associated with the laser pulses are revealed through rapid oscillations of the excitation probability as a function of the time delay between the two pulses. These oscillations take place at the transition frequency (period T = 2.56 fs). The interferences are modulated by beats (at about 580 fs) resulting from the doublet structure of the excited state (4p (2 P 1/2 , 2 P 3/2 )). Three complementary interpretations of this experiment are presented: in terms of beats of quantum interferences, of variation in the spectrum intensity, and of wave packet interferences. Whenever the two laser pulses are temporally overlapped, optical interferences are superimposed on to the quantum interferences. The distinction between these two types of interference is clearly revealed in the two-photon excitation scheme performed on Cs (6s-7d (2 D 3/2 , 2 D 5/2 )) because quantum interferences occur at twice the frequency of the optical interferences. Received: 30 December 1997 / Revised: 28 February 1998 / Accepted: 4 March 1998  相似文献   

6.
Phase properties of the field interacting with a two-level atom in a lossless cavity Jaynes-Cummings model, taking into account the level shifts produced by Stark effect with an additional Kerr medium for one-mode are studied using the phase formalism of Pegg and Barnett. It is shown in particular that phase properties of the field reflect the collapse and revival phenomena. The results for the time evolution of the phase probability distribution and the phase fluctuations are obtained. The effect of Stark shift on the phase properties in both the absence and presence of a Kerr medium is analyzed. Phase localization is found for certain choice of the parameters. Received: 27 March 1998 / Revised: 8 June 1998 / Accepted: 9 June 1998  相似文献   

7.
We study the influence of the laser polarization on the electron impact excitation of atomic hydrogen. Our method takes into account the “dressing” of the target states by including the laser-atom interaction to first order time-dependent perturbation theory, while the interaction of the laser field with the incident electron is treated to all orders by using the non relativist Volkov function. The interaction of the fast projectile with the target atom is treated in the first Born approximation. The calculations are performed via two distinct computations. The first one is based on a direct calculation, the second based on a Sturmian approach. Important differences appear between the angular distributions depending on the polarization chosen. Received : 17 february 1998 / Revised : 20 july 1998 / Accepted : 2 september 1998  相似文献   

8.
Radiative lifetimes of the highly exited states s and d of neutral sulphur have been measured using time-resolved laser-induced fluorescence. The sulphur atoms were generated in a laser-produced plasma. The investigated states were populated through a two-step process involving a two-photon excitation to the lowest excited triplet state of even parity , followed by a one-photon excitation to the investigated state. We obtained ns and ns. These values are much longer than theoretically predicted ones and much shorter than those indirectely inferred from astronomical data. Received: 9 February 1998 / Accepted: 24 February 1998  相似文献   

9.
A photoionization study of the Me(NH3) clusters formed in the reaction of photoablated third group metal vapor with gaseous ammonia is reported. The photoionization spectra exhibit some features due to vibrational excitation of ionic clusters and to transitions to neutral Rydberg states leading to autoionization. DFT quantum chemical calculations are performed on the Me(NH3). The cluster geometries are fully optimized imposing the C3v symmetry. The calculated values of the IPs are in agreement with those experimentally determined. Received: 16 February 1998 / Revised and Accepted: 7 May 1998  相似文献   

10.
We present a simple model for calculating the fluorescence generated by the multi-photon excitation (MPE) of molecules in solution. The model takes into account internal molecular dynamics such as ground-state depletion due to inter-system crossing (ISC), as well as external molecular dynamics associated with diffusion into and out of an excitation volume confined in 3-dimensions. Internal and external molecular dynamics are combined by using a technique of linearization of a modified diffusion equation which takes into account the possibility of concentration depletion due to photobleaching. In addition, we discuss the phenomenon of pulse saturation which effectively limits the molecular excitation rate constant in the case of short pulsed excitation. Our results are specifically applied in the context of fluorescence autocorrelation functions and single-molecule detection. In the latter case, we discuss some consequences of high-order multi-photon photobleaching. Finally, we include three appendices to rigorously define the temporal and spatial profiles of an arbitrary excitation beam, and also to discuss some properties of an exact evaluation of concentration depletion due to photobleaching. Received: 9 March 1998 / Accepted: 20 April 1998  相似文献   

11.
The elementary excitation spectrums for the Anderson model at finite temperatures are calculated by using the Bethe-ansatz solution. The formulation is based on the method of Yang and Yang, which was developed for the one-dimensional boson systems with the -function type interaction. We obtain the temperature dependence of the spin and the charge excitation spectrums. When the impurity level lies deeply from the Fermi level and the Coulomb interaction is suitably large, the resonant peak structure develops in the low energy region of the spin excitation spectrum and the hump structure grows around the impurity level of the charge excitation spectrum with decreasing temperature. Received: 21 January 1998 / Accepted: 17 March 1998  相似文献   

12.
We calculate the maximal Lyapunov exponent, the generalized entropies, the asymptotic distance between nearby trajectories and the fractal dimensions for a finite two-dimensional system at different initial excitation energies. We show that these quantities have a maximum at about the same excitation energy. The presence of this maximum indicates the transition from a chaotic regime to a more regular one. In the chaotic regime the system is composed mainly of a liquid drop while the regular one corresponds to almost freely flowing particles and small clusters. At the transitional excitation energy the fractal dimensions are similar to those estimated from the Fisher model for a liquid-gas phase transition at the critical point. Received: 16 March 2001 / Accepted: 12 July 2001  相似文献   

13.
Seven low-lying triply exited states of lithium-like oxygen and neon are calculated with the multichannel saddle-point and saddle-point complex-rotation methods. The term energies are given for these excited states, along with level shifts and partial Auger widths from dominant decay channels. The mass polarization effect and relativistic corrections are included. The radiative transition rates are also calculated. These results are compared with other theoretical data in the literature. Received: 25 May 1998 / Revised: 28 July 1998 / Accepted: 25 August 1998  相似文献   

14.
The paper discusses the metastable states of a quantum particle in a periodic potential under a constant force (the model of a crystal electron in a homogeneous electric field), which are known as the Wannier-Stark ladder of resonances. An efficient procedure to find the positions and widths of resonances is suggested and illustrated by numerical calculations for a cosine potential, which are in excellent agreement with complex scaling resonance energies. Received: 27 April 1998 / Revised: 21 July 1998 / Accepted: 3 August 1998  相似文献   

15.
A bound polaron in a spherical quantum dot   总被引:12,自引:0,他引:12  
The binding energy of a bound polaron in a spherical quantum dot has been investigated by using the variational method. The influence of LO and SO phonons have taken into consideration. Result shows that the phonon contribution to the binding energy is dependent on the size of the quantum dot as well as the position of the impurity in the quantum dot. Numerical calculation on the ZnSe quantum dot shows that such contribution is about 5% to 20% of the total binding energy. Received: 13 October 1997 / Revised: 4 March 1998 / Accepted: 26 May 1998  相似文献   

16.
The Raman spectra of quantum wires in the region of electronic intra-band excitations are investigated using one- and two-band models based on the Luttinger approximation with spin. Structures related to charge and spin density modes are identified, and analyzed with respect to their behavior with photon energy and temperature. It is found that the low-energy peaks in the polarized spectra, close to resonance that are commonly assigned to “single particle excitations”, can be interpreted as the signature of spin density excitations. A broad structure in the resonant depolarized spectrum is predicted above the frequency of the spin density excitations. This is due to simultaneous but independent propagation of spin and charge density modes. The results, when compared with experiment, show, that the electronic collective excitations of quantum wires at low energies are characteristic for a non-Fermi liquid. Received: 25 March 1998 / Accepted: 3 June 1998  相似文献   

17.
The dynamics of the decagonal AlNiCo phase has been investigated on a single-grain quasicrystalline sample using inelastic neutron scattering. The decagonal structure can be viewed as a periodic stacking of quasiperiodic planes. The anisotropy between the modes propagating in the periodic and quasiperiodic directions is found to be much weaker than theoretically predicted. A strong resonance splitting is observed at an energy transfer of 15 meV for transverse modes polarized in the quasiperiodic plane. Received: 18 November 1998 / Accepted: 27 November 1998  相似文献   

18.
In dynamic nuclear polarisation (DNP), also called hyperpolarisation, a small amount of unpaired electron spins is added to the sample containing the nuclear spins, and the polarisation of these unpaired electron spins is transferred to the nuclear spins by means of a microwave field. Traditional DNP polarises the electron spin of stable paramagnetic centres by cooling down to low temperature and applying a strong magnetic field. Then weak continuous wave microwave fields are used to induce the polarisation transfer. Complicated cryogenic equipment and strong magnets can be avoided using short-lived photo-excited triplet states that are strongly aligned in the optical excitation process. However, a much faster transfer of the electron spin polarisation is needed and pulsed DNP methods like nuclear orientation via electron spin locking (NOVEL) and the integrated solid effect (ISE) are used.

To describe the polarisation transfer with the strong microwave fields in NOVEL and ISE, the usual perturbation methods cannot be used anymore. In the previous paper, we presented a theoretical approach to calculate the polarisation transfer in ISE. In the present paper, the theory is applied to the system naphthalene-h8 doped with pentacene-d14 yielding the photo-excited triplet states and compared with experimental results.  相似文献   


19.
We show how a static electric field can be used to control the localization of nonspreading wavepackets of a hydrogen atom driven by a linearly polarized microwave field. This allows for creation of wavepackets localized on fully stable resonance islands which, at the same time, can easily be excited by a direct optical transition from a low lying state. A semiclassical analysis is used to predict the energies and properties of such states. Received: 27 November 1997 / Accepted: 27 January 1998  相似文献   

20.
The vibrational spectrum of ultra-thin layer GaSb/AlSb superlattices was investigated in detail by infrared (IR) and Raman spectroscopies. The effect of confinement of the transverse and longitudinal optical phonons in both types of the layers was studied. The dispersions of optical phonons of the GaSb and the AlSb obtained from the analysis of the Raman and IR spectra are in a good accordance with the theoretical data and results of neutron scattering experiments. First- and second-order Raman spectroscopy indicates the presence of intermixture of atoms at the interfaces in the GaSb/AlSb superlattices. Received: 11 May 1998 / Accepted: 21 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号