首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Based on an augmented Lagrangian line search function, a sequential quadratically constrained quadratic programming method is proposed for solving nonlinearly constrained optimization problems. Compared to quadratic programming solved in the traditional SQP methods, a convex quadratically constrained quadratic programming is solved here to obtain a search direction, and the Maratos effect does not occur without any other corrections. The “active set” strategy used in this subproblem can avoid recalculating the unnecessary gradients and (approximate) Hessian matrices of the constraints. Under certain assumptions, the proposed method is proved to be globally, superlinearly, and quadratically convergent. As an extension, general problems with inequality and equality constraints as well as nonmonotone line search are also considered.  相似文献   

2.
In this paper, a kind of optimization problems with nonlinear inequality constraints is discussed. Combined the ideas of norm-relaxed SQP method and strongly sub-feasible direction method as well as a pivoting operation, a new fast algorithm with arbitrary initial point for the discussed problem is presented. At each iteration of the algorithm, an improved direction is obtained by solving only one direction finding subproblem which possesses small scale and always has an optimal solution, and to avoid the Maratos effect, another correction direction is yielded by a simple explicit formula. Since the line search technique can automatically combine the initialization and optimization processes, after finite iterations, the iteration points always get into the feasible set. The proposed algorithm is proved to be globally convergent and superlinearly convergent under mild conditions without the strict complementarity. Finally, some numerical tests are reported.  相似文献   

3.
In this paper we study a class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations of quadratic assignment problems. We show that each problem is polynomially solved. Strong duality holds if a redundant constraint is introduced. As an application, a new lower bound is proposed for the quadratic assignment problem.  相似文献   

4.
One of the most interesting topics related to sequential quadratic programming algorithms is how to guarantee the consistence of all quadratic programming subproblems. In this decade, much work trying to change the form of constraints to obtain the consistence of the subproblems has been done. The method proposed by De O. Pantoja J.F. A. and coworkers solves the consistent problem of SQP method, and is the best to the authors’ knowledge. However, the scale and complexity of the subproblems in De O. Pantoja’s work will be increased greatly since all equality constraints have to be changed into absolute form. A new sequential quadratic programming type algorithm is presented by means of a special ε-active set scheme and a special penalty function. Subproblems of the new algorithm are all consistent, and the form of constraints of the subproblems is as simple as one of the general SQP type algorithms. It can be proved that the new method keeps global convergence and Local superlinear convergence. Project partly supported by the National Natural Science Foundation of China.  相似文献   

5.
为了更好地解决二次约束二次规划问题(QCQP), 本文基于分支定界算法框架提出了自适应线性松弛技术, 在理论上证明了这种新的定界技术对于解决(QCQP)是可观的。文中分支操作采用条件二分法便于对矩形进行有效剖分; 通过缩减技术删除不包含全局最优解的部分区域, 以加快算法的收敛速度。最后, 通过数值结果表明提出的算法是有效可行的。  相似文献   

6.
为了更好地解决二次约束二次规划问题(QCQP), 本文基于分支定界算法框架提出了自适应线性松弛技术, 在理论上证明了这种新的定界技术对于解决(QCQP)是可观的。文中分支操作采用条件二分法便于对矩形进行有效剖分; 通过缩减技术删除不包含全局最优解的部分区域, 以加快算法的收敛速度。最后, 通过数值结果表明提出的算法是有效可行的。  相似文献   

7.
In this paper, a class of finely discretized Semi-Infinite Programming (SIP) problems is discussed. Combining the idea of the norm-relaxed Method of Feasible Directions (MFD) and the technique of updating discretization index set, we present a new algorithm for solving the Discretized Semi-Infinite (DSI) problems from SIP. At each iteration, the iteration point is feasible for the discretized problem and an improved search direction is computed by solving only one direction finding subproblem, i.e., a quadratic program, and some appropriate constraints are chosen to reduce the computational cost. A high-order correction direction can be obtained by solving another quadratic programming subproblem with only equality constraints. Under weak conditions such as Mangasarian–Fromovitz Constraint Qualification (MFCQ), the proposed algorithm possesses weak global convergence. Moreover, the superlinear convergence is obtained under Linearly Independent Constraint Qualification (LICQ) and other assumptions. In the end, some elementary numerical experiments are reported.  相似文献   

8.
提出了一个处理等式约束优化问题新的SQP算法,该算法通过求解一个增广Lagrange函数的拟Newton方法推导出一个等式约束二次规划子问题,从而获得下降方向.罚因子具有自动调节性,并能避免趋于无穷.为克服Maratos效应采用增广Lagrange函数作为效益函数并结合二阶步校正方法.在适当的条件下,证明算法是全局收敛的,并且具有超线性收敛速度.  相似文献   

9.
A working set SQCQP algorithm with simple nonmonotone penalty parameters   总被引:1,自引:0,他引:1  
In this paper, we present a new sequential quadratically constrained quadratic programming (SQCQP) algorithm, in which a simple updating strategy of the penalty parameter is adopted. This strategy generates nonmonotone penalty parameters at early iterations and only uses the multiplier corresponding to the bound constraint of the quadratically constrained quadratic programming (QCQP) subproblem instead of the multipliers of the quadratic constraints, which will bring some numerical advantages. Furthermore, by using the working set technique, we remove the constraints of the QCQP subproblem that are locally irrelevant, and thus the computational cost could be reduced. Without assuming the convexity of the objective function or the constraints, the algorithm is proved to be globally, superlinearly and quadratically convergent. Preliminary numerical results show that the proposed algorithm is very promising when compared with the tested SQP algorithms.  相似文献   

10.
Recently, Ye, Tapia and Zhang (1991) demonstrated that Mizuno—Todd—Ye's predictor—corrector interior-point algorithm for linear programming maintains the O( L)-iteration complexity while exhibiting superlinear convergence of the duality gap to zero under the assumption that the iteration sequence converges, and quadratic convergence of the duality gap to zero under the assumption of nondegeneracy. In this paper we establish the quadratic convergence result without any assumption concerning the convergence of the iteration sequence or nondegeneracy. This surprising result, to our knowledge, is the first instance of a demonstration of polynomiality and superlinear (or quadratic) convergence for an interior-point algorithm which does not assume the convergence of the iteration sequence or nondegeneracy.Supported in part by NSF Grant DDM-8922636 and NSF Coop. Agr. No. CCR-8809615, the Iowa Business School Summer Grant, and the Interdisciplinary Research Grant of the University of Iowa Center for Advanced Studies.Supported in part by NSF Coop. Agr. No. CCR-8809615, AFOSR 89-0363, DOE DEFG05-86ER25017 and ARO 9DAAL03-90-G-0093.Supported in part by NSF Grant DMS-9102761 and DOE Grant DE-FG05-91ER25100.  相似文献   

11.
Convex quadratically constrained quadratic problems are considered. It is shown that such problems can be transformed to aconic form. The feasible set of the conic form is the intersection of a direct product of standard quadratic cones intersected with a hyperplane (the analogue of a simplex), and a linear subspace. For a problem of such form, the analogue of Karmarkar's projective transformation and logarithmic barrier function are built. This allows us to extend “word by word” the method of Karmarkar for LP to QCQP and allows us to obtain a similar polynomial worst-case bound for the number of iterations.  相似文献   

12.
We present a branch and cut algorithm that yields in finite time, a globally ε-optimal solution (with respect to feasibility and optimality) of the nonconvex quadratically constrained quadratic programming problem. The idea is to estimate all quadratic terms by successive linearizations within a branching tree using Reformulation-Linearization Techniques (RLT). To do so, four classes of linearizations (cuts), depending on one to three parameters, are detailed. For each class, we show how to select the best member with respect to a precise criterion. The cuts introduced at any node of the tree are valid in the whole tree, and not only within the subtree rooted at that node. In order to enhance the computational speed, the structure created at any node of the tree is flexible enough to be used at other nodes. Computational results are reported that include standard test problems taken from the literature. Some of these problems are solved for the first time with a proof of global optimality. Received December 19, 1997 / Revised version received July 26, 1999?Published online November 9, 1999  相似文献   

13.
This paper presents a successive quadratic programming algorithm for solving general nonlinear programming problems. In order to avoid the Maratos effect, direction-finding subproblems are derived by modifying the second-order approximations to both objective and constraint functions of the problem. We prove that the algorithm possesses global and superlinear convergence properties.This work was supported in part by a Scientific Research Grant-in-Aid from the Ministry of Education, Science and Culture, Japan.  相似文献   

14.
We propose a branch-and-bound algorithm for solving nonconvex quadratically-constrained quadratic programs. The algorithm is novel in that branching is done by partitioning the feasible region into the Cartesian product of two-dimensional triangles and rectangles. Explicit formulae for the convex and concave envelopes of bilinear functions over triangles and rectangles are derived and shown to be second-order cone representable. The usefulness of these new relaxations is demonstrated both theoretically and computationally.  相似文献   

15.
A new descent algorithm for solving quadratic bilevel programming problems   总被引:2,自引:0,他引:2  
1. IntroductionA bilevel programming problem (BLPP) involves two sequential optimization problems where the constraint region of the upper one is implicitly determined by the solutionof the lower. It is proved in [1] that even to find an approximate solution of a linearBLPP is strongly NP-hard. A number of algorithms have been proposed to solve BLPPs.Among them, the descent algorithms constitute an important class of algorithms for nonlinear BLPPs. However, it is assumed for almost all…  相似文献   

16.
Recently, Zhang, Tapia, and Dennis (Ref. 1) produced a superlinear and quadratic convergence theory for the duality gap sequence in primal-dual interior-point methods for linear programming. In this theory, a basic assumption for superlinear convergence is the convergence of the iteration sequence; and a basic assumption for quadratic convergence is nondegeneracy. Several recent research projects have either used or built on this theory under one or both of the above-mentioned assumptions. In this paper, we remove both assumptions from the Zhang-Tapia-Dennis theory.Dedicated to the Memory of Magnus R. Hestenes, 1906–1991This research was supported in part by NSF Cooperative Agreement CCR-88-09615 and was initiated while the first author was at Rice University as a Visiting Member of the Center for Research in Parallel Computation.The authors thank Yinyu Ye for constructive comments and discussions concerning this material.This author was supported in part by NSF Grant DMS-91-02761 and DOE Grant DE-FG05-91-ER25100.This author was supported in part by AFOSR Grant 89-0363, DOE Grant DE-FG05-86-ER25017, and ARO Grant 9DAAL03-90-G-0093.  相似文献   

17.
In this paper, a sequential quadratically constrained quadratic programming (SQCQP) method for unconstrained minimax problems is presented. At each iteration the SQCQP method solves a subproblem that involves convex quadratic inequality constraints and a convex quadratic objective function. The global convergence of the method is obtained under much weaker conditions without any constraint qualification. Under reasonable assumptions, we prove the strong convergence, superlinearly and quadratic convergence rate.  相似文献   

18.
We consider the problem of minimizing an indefinite quadratic objective function subject to twosided indefinite quadratic constraints. Under a suitable simultaneous diagonalization assumption (which trivially holds for trust region type problems), we prove that the original problem is equivalent to a convex minimization problem with simple linear constraints. We then consider a special problem of minimizing a concave quadratic function subject to finitely many convex quadratic constraints, which is also shown to be equivalent to a minimax convex problem. In both cases we derive the explicit nonlinear transformations which allow for recovering the optimal solution of the nonconvex problems via their equivalent convex counterparts. Special cases and applications are also discussed. We outline interior-point polynomial-time algorithms for the solution of the equivalent convex programs. This author's work was partially supported by GIF, the German-Israeli Foundation for Scientific Research and Development and by the Binational Science Foundation. This author's work was partially supported by National Science Foundation Grants DMS-9201297 and DMS-9401871.  相似文献   

19.
Recently several new results have been developed for the asymptotic (local) convergence of polynomial-time interior-point algorithms. It has been shown that the predictor—corrector algorithm for linear programming (LP) exhibits asymptotic quadratic convergence of the primal—dual gap to zero, without any assumptions concerning nondegeneracy, or the convergence of the iteration sequence. In this paper we prove a similar result for the monotone linear complementarity problem (LCP), assuming only that a strictly complementary solution exists. We also show by example that the existence of a strictly complementarity solution appears to be necessary to achieve superlinear convergence for the algorithm.Research supported in part by NSF Grants DDM-8922636 and DDM-9207347, and an Interdisciplinary Research Grant of the University of Iowa, Iowa Center for Advanced Studies.  相似文献   

20.
This paper presents a quadratically approximate algorithm framework (QAAF) for solving general constrained optimization problems, which solves, at each iteration, a subproblem with quadratic objective function and quadratic equality together with inequality constraints. The global convergence of the algorithm framework is presented under the Mangasarian-Fromovitz constraint qualification (MFCQ), and the conditions for superlinear and quadratic convergence of the algorithm framework are given under the MFCQ, the constant rank constraint qualification (CRCQ) as well as the strong second-order sufficiency conditions (SSOSC). As an incidental result, the definition of an approximate KKT point is brought forward, and the global convergence of a sequence of approximate KKT points is analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号