首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A diode-end-pumped electro-optic (EO) Q-switched Nd:YVO4 laser operating at repetition rate of 10 kpps (pulses per second) was reported. A block of La3Ga5SiO14 (LGS) single crystal was used as a Q-switch and the driver was a metal oxide semiconductor field effect transistor (MOS-FET) pulser of high repetition rate and high voltage. At continuous wave (CW) operation, the slope efficiency of the laser was 46%, and maximum optical-to-optical efficiency was 38.5%. Using an output coupler with transmission of 70%, a 10-kpps Q-switched pulse train with 0.4-mJ monopulse energy and 8.2-ns pulse width was achieved, the optical conversion efficiency was around 15%, and the beam quality M2 factor was less than 1.2.  相似文献   

2.
We have demonstrated an efficient, high-energy singly resonant pulsed KTP-based intracavity optical parametric oscillator pumped by a quasi-continuous wave (QCW) diode-pumped electro-optical Q-switched Nd:YAG laser. 31.5-mJ energy at 1572-nm wavelength and 50.4-mJ pulse energy at 1064 nm were obtained at 10 Hz simultaneously. The total conversion efficiency with respect to diode pump energy was 14%.  相似文献   

3.
王春  沈小华 《光学学报》1999,19(1):3-27
研究了二极管端面泵浦的附加脉冲锁模的Nd:YAG激光器并分析了脉冲压缩原理及自启动机制,在最大泵浦功率为2.4W时,得到重复频率为134MHz、脉宽为2ps、有效输出功率76mW、相应峰值继283W、波长为1.053μm、波长为1.053μm的稳定的连续模脉冲序列。  相似文献   

4.
We report >50-mJ Q-switched energy output from a 2.09-microm Ho:YAG oscillator, resonantly pumped at 1.9-microm by a diode-pumped Tm:YLF laser. We demonstrate a Q-switched-to-normal-mode extraction efficiency of 100% at an output energy of 30 mJ and over 64% at the 50-mJ output level. Operating at 50 mJ (60 Hz) of output, a pulse width of 14 ns is achieved from the holmium oscillator, which corresponds to approximately 3.6 MW of peak power. At the 50-mJ output level, a beam-propagation factor M2 approximately 1.2 is achieved.  相似文献   

5.
We presented a compact and efficient diode-end-pumped 1313 nm Nd:YLF laser with an effective pump system and no additional insertion loss. The different thermal lensing effects along the ?? and ?? polarizations in an a-cut Nd:YLF crystal were investigated. 6.2 W output power of the polarized 1313 nm laser was obtained at the absorbed pump power of 17.5 W, corresponding to the optical-optical efficiency of 35% and the slope efficiency of 41%.  相似文献   

6.
We report on a passively Q-switched end pumped Nd:YLF laser including a noncritically phase-matched KTP singly resonant intracavity optical parametric oscillator (IOPO-KTP). For the Q-switching operation we have used Cr:YAG saturable absorber. The optimized passively Q-switched Nd:YLF laser without IOPO generated linearly polarized pulses of 11.5 ns and 1.07 mJ at 1047 nm. The conversion efficiency of the optimized Q-switched pulse energy at 1047 nm to 1547 nm of a signal approached about 47%. For optimizing both Nd:YLF laser and IOPO we have numerically solved a theoretical model. We have achieved 1.6-ns duration pulses at 1547 nm with energy of 0.5 mJ and peak power of above 300 kW. The beam quality was excellent (M2 ≈1).  相似文献   

7.
We describe efficient cw operation of a Nd:YLF laser end pumped by two beam-shaped 20-W diode bars on the 1.053-microm transition. Fundamental transverse-mode operation with output power of 11.1 W for ~29.5 W of incident pump power was demonstrated. In Q-switched operation 8.4 W of average power at a pulse repetition frequency of 40 kHz and ~2.6-mJ pulse energy at a pulse repetition frequency of 1 kHz were achieved.  相似文献   

8.
Chen YF  Lan YP  Wang SC 《Optics letters》2000,25(14):1016-1018
We demonstrate a compact and efficient diode-end-pumped TEM>(00) laser with output power of 30 W for 48 W of incident pump power by use of two coated Nd:YVO> (4) crystals to form a thermally stabilized flat-flat cavity. In Q -switched operation 25 W of average power at a pulse-repetition rate of 100 kHz and ~0.9-mJ pulse energy at a pulse-repetition rate of 10 kHz were produced.  相似文献   

9.
张新陆  王月珠 《物理学报》2006,55(3):1160-1164
根据激光二极管纵向抽运Tm,Ho:YLF激光器的能级跃迁和能量传递过程,在考虑能量传递上转换(ETU)的情况下,建立了Tm,Ho:YLF主动调Q激光器的准三能级速率方程,得出了激光单脉冲能量的解析表达式.在理论上指出,能量传递上转换不但减小了输出单脉冲能量,而且严重减小了激光上能级寿命.实验上给出了在固定抽运功率下,单脉冲能量随重复频率的变化关系,验证了理论所指出的能量传递上转换减小了激光上能级寿命. 关键词: 二极管抽运 Tm Ho:YLF晶体 能量传递上转换 速率方程  相似文献   

10.
Li D  Ma Z  Haas R  Schell A  Zhu P  Shi P  Du K 《Optics letters》2008,33(15):1708-1710
We have developed a novel electro-optic Q-switched diode-end-pumped solid slab laser that combines high energy, short pulse width, high repetition rates, and diffraction-limited beam quality. With two partially end-pumped Nd:YLF slabs and a 100 mm long off-axis positive branch stable-unstable oscillator, 24.2 mJ, 7.1 ns electro-optic Q-switched pulse at 1 kHz repetition rate with a beam quality of M(x)(2)=1.4 and M(y)(2)=1.3 was generated. The peak power reached 3.5 MW. Efficient external second-harmonic generation was achieved by use of lithium triborate with low peak-power intensity.  相似文献   

11.
We demonstrate a high power continuous-wave (CW) and acoustic-optically (AO) Q-switched 1314-nm laser with a diode-side-pumped Nd:YLF module. A maximum CW output power of 21.6 W is obtained with a diode pump power of 180 W, corresponding to an optical-to-optical conversion efficiency of 12.0% and a slope efficiency of 16.1%. In the Q-switching operation, a highest pulse energy of 3.8 mJ is obtained at a pulse repetition rate of 1 kHz. The shortest pulse width and maximum single peak power are 101.9 ns and 37.3 kW, respectively.  相似文献   

12.
We report continuous-wave (CW) and repetitively Q-switched operation of an in-band-pumped Ho:LuAG laser at room temperature. End-pumped by a Tm:YLF solid-state laser with emission wavelength of 1.91 μm, the CW Ho:LuAG laser generated 5.4-W output at 2100.7 nm with beam quality factor of M 2~1.03 for an incident pump power of 14.1 W, corresponding to slope efficiency of 67% with respect to absorbed pump power. Up to 1.5-mJ energy per pulse at pulse repetition frequency (PRF) of 3 kHz and 4.5-W average power with FWHM pulse width of 28 ns at 5 kHz were demonstrated in repetitively Q-switched operation.  相似文献   

13.
In this letter, we describe the operation of an end-pumped acousto-optic Q-switched Nd:YLF laser. According to the theoretical analysis and calculation for Nd:YLF crystal, the thermal focal length of σ-polarized laser is positive in plane-parallel resonator, while that of π-polarized laser is negative. Hence laser operation at σ-polarized 1313 nm should be stable in plane-parallel cavity. When absorbed pump power is 12.45 W and the pulse repetition frequency is 10 kHz, 3.1 W output laser at 1313 nm is achieved. As a result, the optical–optical conversion efficiency is 25.4 % and slope efficiency is 31.2 %, respectively.  相似文献   

14.
A diode-end-pumped actively Q-switched eye-safe intracavity Raman laser at 1532 nm is demonstrated, with Nd:YVO4 as the laser crystal and BaWO4 as the Raman crystal. The highest average power of 1.5 W is obtained, with an incident pump of 12 W and a pulse repetition rate of 35 kHz, corresponding to a diode-to-Stokes conversion efficiency of 12.5%.  相似文献   

15.
An eye-safe KTA OPO pumped by a Nd:YLF laser is demonstrated and a comparison with that pumped by a Nd:YVO4 laser is performed. Although the slope efficiency of the continuous-wave free-running Nd:YLF laser is lower than that of the Nd:YVO4 laser, the performance of KTA OPOs pumped by the Q-switched Nd:YLF laser is better, especially at lower repetition rates. The slope efficiency of KTA OPO pumped by a Nd:YLF laser is 14.6% at 30 kHz and 11.04% at 10 kHz. The better energy storage ability of Nd:YLF makes it an excellent laser medium in IOPOs.  相似文献   

16.
A diode-pumped chirped-pulse regenerative amplifier with a cooled Yb:YLF crystal has been developed. The output pulse energy is 30 mJ at 20-Hz repetition rate. A high effective extraction efficiency of 68% is obtained, which is attributed to reduced saturation fluence at low temperature and to a high effective pulse energy fluence during regenerative amplification. After pulse compression by use of a parallel grating pair, 18-mJ pulse energy and 795-fs pulse duration are obtained.  相似文献   

17.
Du K  Li D  Zhang H  Shi P  Wei X  Diart R 《Optics letters》2003,28(2):87-89
We report on a compact and highly efficient diode-end-pumped TEM00 Nd:YVO4 slab laser with an output power of 103 W and beam quality M2 < or = 1.5. The optical-to-optical efficiency was 41.5%. In electro-optically Q-switched operation, 83 W of average power at a pulse-repetition rate of 50 kHz with a pulse length of 11.3 ns was obtained. At a pulse-repetition rate of 10 kHz, 5.6 mJ of pulse energy, and 870 kW of peak power were measured.  相似文献   

18.
胡文涛  周复正 《光学学报》1995,15(8):83-986
报道准连续60W激光二极管列阵侧面泵浦Nd:YLF固体激光器的研究结果,当器件的动转重复频率为30Hz时,得到4.4mJ的1.047μm激光输出,光-光转换效率达到18.3%,斜率效率达24.4%。声光和电光调Q,得到能量为2.2mJ,脉宽分别为50ns和30ns的脉冲输出。  相似文献   

19.
崔建丰  高涛  张亚男  王迪  岱钦  姚俊 《发光学报》2016,(11):1367-1371
研制了输出功率达瓦级的351 nm准连续紫外激光器。激光器采用激光二极管(LD)端面抽运Nd∶YLF晶体和声光调Q技术,实现了1 053 nm准连续基波振荡。在结构简单的V型腔中,两块Li B3O5(LBO)晶体对基频光进行二倍频和三倍频,获得了高功率351 nm准连续紫外激光输出。在LD抽运功率为14 W、声光调Q激光器的调制频率为1 k Hz的工作条件下,得到351 nm紫外激光平均输出功率为1.12 W、脉冲宽度为34 ns、单脉冲能量为1.12 m J、峰值功率达32.94 k W。LD抽运光到351 nm紫外激光的光-光转换效率达到8%,电光效率为3.4%,光束质量良好。  相似文献   

20.
A diode-end-pumped high repetition rate, high peak power acousto-optical (AO) Q-switched 946 nm Nd:YAG laser was demonstrated in this paper. In our experiments, a 20 mm miniature acousto-optical Q-switch was employed in a 45 mm linear laser cavity for generating the short laser pulse. At a repetition rate of 10 kHz, a maximum average output power of 2.9 W was achieved with a pulse width of 24.4 ns, giving a peak power of 11.9 kW. To the best of our knowledge, this is the highest peak power 946 nm Nd:YAG laser at high repetition rate operation. Moreover, pulse train with good stability was also obtained at the repetition rate of 50 kHz. At an incident pump power of 22.3 W, up to an average output power of 3.5 W pulsed 946 nm laser was generated at 50 kHz with a pulse width of 69 ns, corresponding to an optical conversion efficiency of 15.7% and an average slope efficiency of 24.1%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号