首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Densities and viscosities of binary ionic liquids mixtures, 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([eOHmim][BF4]) + 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([eOHmim][BF4]) + N-butylpyridinium tetrafluoroborate ([bpy][BF4]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) + N-butylpyridinium tetrafluoroborate ([bpy][BF4]) were measured over the entire mole fraction from T = (298.15 to 343.15) K. The excess molar volumes were calculated and correlated by Redlich–Kiser polynomial expansions. The viscosities for pure ionic liquids were analyzed by means of the Vogel–Tammann–Fulcher equation and ideal mixing rules were applied for the ILs mixtures.  相似文献   

2.
Batch-mode pyrolysis of 200.0 g samples of polymers was studied at low temperature. The cracking reaction was carried out in a stainless-steel autoclave with reaction temperatures of 360, 380, 400 and 420 °C, initial pressure of 6.325 kPa (absolute pressure) and reaction times of 0–240 min. Based on the experimental results, a four-lump kinetic model has been developed to describe the production distribution of the light fractions, middle distillates and heavy fraction. This model reasonably fitted the results in each reaction of operation conditions. It was also found that the pyrolysis kinetics of separated plastic, mixed plastic and mixed plastic containing additives can be described by the same kinetic model. The plastic additives have not had a great influence on the product distribution and kinetics of the mixed plastic pyrolysis. Finally, the optimum conditions of low-temperature conversion of plastic mixtures to value-added products were established. The formation of heavy fractions from HDPE was as high as 70 wt% at 380 °C at a reaction time of 250 min. During the thermal degradation of plastic mixtures, the heavy fractions yielded up 50 wt% for 30 min reaction time at 400 °C. The total activation energies for the conversion of HDPE and the plastic mixtures were estimated to be 217.66 kJ mol−1 and 178.49 kJ mol−1, respectively.  相似文献   

3.
A new apparatus to measure simultaneously the density and viscosity of liquids has been designed and constructed based on the hydrostatic weighing and falling-body principles. The density and viscosity of monoethylene glycol (MEG), diethylene glycol (DEG), and triethylene glycol (TEG) and their binary, (50%MEG + 50%DEG), (50%MEG + 50%TEG), (50%DEG + 50%TEG), and ternary (33.33%MEG + 33.33%DEG + 33.34%TEG) mixtures have been measured over the temperature range from 293 K to 473 K and at atmospheric pressure. The expanded uncertainty of the density, pressure, temperature, and viscosity measurements at the 95% confidence level with a coverage factor of k = 2 is estimated to be 0.15% to 0.30%, 0.05%, 0.06 K, and 1.5% to 2.0% (depending on temperature and pressure ranges), respectively. The theoretically based Arrhenius–Andrade and Vogel–Tamman–Fulcher type equations were used to describe the temperature dependence of measured viscosities for pure polyethylene glycols and their mixtures.  相似文献   

4.
The influence of bismuth addition on the activity and selectivity of palladium catalysts supported on SiO2 in the reaction of glucose oxidation to gluconic acid was studied. The catalysts modified with Bi show much better selectivity and activity than palladium catalysts. The XRD studies proved the presence of intermetallic compounds BiPd and Bi2Pd, which probably increase activity and selectivity of PdBi/SiO2 catalysts in the oxidation of glucose. The TPO studies of catalysts containing 5 wt.% Pd/SiO2, 3 wt.% Bi/SiO2 and 5 wt.% Pd–5 wt.% Bi/SiO2 show that palladium oxidation occurs at much higher temperatures than in the case of bismuth. The maximum rate of Pd oxidation occurs at around 580 K while the maximum rate of Bi oxidation takes place at around 430 K. Considering the above facts, a reaction involving bimetallic catalysts in oxidizing atmosphere at 333 K should not lead to surface oxidation of palladium and thus their deactivation.  相似文献   

5.
《Fluid Phase Equilibria》2005,238(2):242-253
Biodegradable polymers have received much attention as materials for reducing environmental problems caused by conventional plastic wastes. In this work, the thermodynamic behavior of binary and ternary systems composed by commercial biodegradable polymers and high-pressure fluids [poly(d,l-lactide) + dimethyl ether, poly(d,l-lactide) + carbon dioxide, poly(d,l-lactide) + chlorodifluoromethane, poly(d,l-lactide) + difluoromethane, poly(d,l-lactide) + trifluoromethane, poly(d,l-lactide) + 1,1,1,2-tetrafluoroethane, poly(butylene succinate) + carbon dioxide and poly(d,l-lactide) + dimethyl ether + carbon dioxide] and binary systems formed by commercial biodegradable copolymers and supercritical fluids [poly(butylene succinate-co-butylene adipate) + carbon dioxide] were studied. The Perturbed Chain-SAFT (PC-SAFT) and the Sanchez–Lacombe (SL) non-cubic EoS were used to model the liquid–fluid equilibrium (LFE) for these binary systems, by fitting one temperature-dependent binary interaction parameter. For comparison, the same data were also modeled by using the traditional Peng–Robinson (PR) cubic EoS. The three pure-component parameters of PC-SAFT and SL EoS and two pure-component of PR EoS were regressed by fitting pure-component data (liquid pressure–volume–temperature data for polymers and copolymer and vapor pressure and saturated liquid molar volume for fluids). The estimation of pure-component and binary interaction parameters was performed by using the modified maximum likelihood method with an objective function that includes the cloud point pressure. An excellent agreement was obtained with the PC-SAFT EoS, while the performance of the SL and PR EoS was less satisfactory.  相似文献   

6.
《Fluid Phase Equilibria》2006,245(2):158-167
Employing a previously derived model to describe intra-diffusion coefficients in liquid mixtures based on molecular simulations of spherical Lennard–Jones particles [T. Merzliak, A. Pfennig, Mol. Simul. 30 (7) (2004) 459–468], an improved set of coefficients was obtained from optimized molecular dynamics simulations. In these simulations, the thermodynamic states were planned with the help of optimal experimental design, which allows to reduce the number of simulations necessary for significant determination of the coefficients by roughly a decade. The model was then applied to the real liquid mixtures toluene + cyclohexane, toluene + 1,4-dioxane, n-hexane + toluene, 1,4-dioxane + cyclohexane and cyclohexane + n-hexane, which have molecular properties that correspond to the model assumptions. Experimental intra-diffusion coefficients for the mixtures toluene + cyclohexane, toluene + 1,4-dioxane, n-hexane + toluene and 1,4-dioxane + cyclohexane were determined with nuclear magnetic resonance (NMR) techniques in this work. Even without additional parameters for the mixture the proposed model can describe the diffusion coefficients with an average accuracy of 5%. Allowing a deviation from Lorentz–Berthelot mixing rules leads generally only to slight improvement.  相似文献   

7.
During recent last years, outstanding properties of ionic liquids such as low melting point, large liquid range and negligible volatility have turned them into possible volatile organic solvents replacers to break alcohol-alkane azeotropic mixtures. On this basis, two ionic liquids, butyltrimethylammoniumbis(trifluoromethylsulfonyl)imide, [BTMA][NTf2], and tributylmethylammoniumbis(trifluoromethylsulfonyl)imide, [TBMA][NTf2], were studied through ternary liquid+liquid equilibrium (LLE) of {alkane(1) + alcohol (2) + IL(3)} at T = 298.15 K and atmospheric pressure in order to consider the effect of ionic liquid cation alkyl chain length on the extraction process.The ILs capability as azeotrope breakers was determined by the calculation of parameters such as solute distribution ratio, β, and selectivity, S and this capability was compared with other bis (trifluoromethylsulfonyl)imide based ionic liquids from literature. The consistency of tie-line data was ascertained by applying the Othmer–Tobias and Hand equations. Finally, the experimental LLE were correlated by the Non Random Two Liquid (NRTL) thermodynamic model.  相似文献   

8.
Cellulose/polyethylene-co-acrylic acid blends (cellulose concentration 0–50 wt.%) was prepared via mixing their alkaline solutions. The formed suspension was precipitated and dried, where after the morphology as well the thermal and mechanical properties of the blends were characterized by Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), and Dynamic Mechanical Analyses (DMA). In addition, the melt properties of the blend were studied by rotational rheometer following some injection molding trials as well. The polymers were found to be dispersed homogenously in the blend and the crystallization temperature of the PE-co-AA phase was increased ~6 °C due to the nucleation ability of the cellulose phase. The size of the discontinuous cellulose phase was 5 μm at the most while at higher cellulose concentrations (30–50 wt.%) the polymers formed co-continuous morphology in the blend. This change in the morphology was observed also in their melt properties which showed that the blend reached so called percolation point at ~20 wt.% of cellulose. Finally, the blends were found to be injection moldable over the whole composition range, if only the injection molding became more challenging (i.e. higher mold temperatures and longer mold cooling times were required) after the percholation point.  相似文献   

9.
The ternary (liquid + liquid) equilibrium (LLE) data for mixtures of dodecane (C12H26) and ethanol with ionic liquids 1,3-dimethylimidazolium methylsulfate [Mmim][MeSO4], 1-ethyl-3-methylimidazolium methylsulfate, [Emim][MeSO4] and 1-butyl-3-methylimidazolium methylsulfate, [Bmim][MeSO4], were studied at T = 298.15 K and 0.101 MPa. The selectivity and solute distribution coefficient ratios determined from the data were used to examine the possibility of using these ionic liquids for extraction of ethanol from dodecane. The temperature dependency was investigated by measuring the LLE data for {dodecane + ethanol + [Mmim][MeSO4]} at T = 313.15 K and 0.101 MPa. The Othmer–Tobias and Hand equations were used to test the consistency of the tie-line data. The tie-line data were correlated with the Non-Random Two Liquid (NRTL) equation which provided a good model and representation for the experimental results.  相似文献   

10.
A series of porous chars has been obtained by heat treatment of unconventional raw materials, including plants belonging to short rotation woody crops (Salix viminalis, Salix fragilis). The pyrolysis conditions (1–3 h, 600–900 °C) were the same for the production of all chars, e.g., mesoporous and microporous chars. Salix viminalis wood exhibited an advantage over the other materials, because the obtained material had microporous structure such as carbon molecular sieves. Similar properties (surface area, total pore volume, pore size distribution) were observed for charcoals produced from pine wood (Pinus silvestri), but the thermal stability of these properties was inferior. Furthermore, we have also discussed economical and environmental issues associated with the exploitation of wood resources.  相似文献   

11.
Relative permittivity measurements were made on binary mixtures of (2-butanol + 2-butanone) and (2-butanol or 2-butanone + cyclohexane) for various concentrations at T = (298.2, 308.2, and 318.2) K. Some experimental results are compared with those obtained from theoretical calculations and interpreted in terms of homo- and heterogeneous interactions and structural effects. The molecular dipole moments were determined using Guggenheim–Debye method within the temperature range of (298.2 to 318.2) K. The variations of effective dipole moment and correlation factor, g, with the mole fraction in these materials were investigated using Kirkwood–Frohlich equation. The pure compounds showed a negative and small temperature coefficient of effective dipole moment. In order to obtain valuable information about heterogeneous interaction (interactions between the unlike molecules), the Kirkwood correlation factor, the Bruggeman dielectric factor and the excess permittivity were calculated. In order to predict the permittivity data of polar–apolar binary mixtures, five mixing rules were applied.  相似文献   

12.
Synthesis and physico-chemical characterization of a pure magnesium phosphate (MgP) prepared by coprecipitation, and MgP modified by introduction of cobalt–molybdenum (4–12 wt.% of MoO3 with the Co/Mo ratio fixed at 0.5) have been carried out. The structural properties of these catalysts were characterized by X-ray diffraction, their textural properties were determined by N2 adsorption–desorption isotherms and the dispersion of cobalt–molybdenum was studied by XPS spectroscopy. Their acid properties have been investigated by in situ FT-IR spectroscopy of adsorbed molecules, often, 2,6-dimethylpyridine (pKa = 6.7), pyridine (pKa = 5.3). Co–Mo incorporation leads to a modification in the MgP acid–base properties, especially on the acid sites type and number. Thus, lower loading of cobalt–molybdenum species decreased the number of strong Lewis acid sites whereas higher loading increased it. It was found that Lewis acid sites on magnesium phosphates play an important role in the isomerization of 3,3-dimethylbut-1-ene.The 3,3-dimethylbut-1-ene (33DMB1) conversion increases with the reaction temperature from 493 to 653 K for MgP, but decreases after 573 K for MgP supported by Co–Mo. A linear relationship between both types of acid sites and conversion values was found. The deactivation of the catalysts appears at high reaction temperature (>573 K).  相似文献   

13.
Refractive indices of ternary mixtures formed by (water + ethanol + k-ethylene glycol) (when k is mono, di or tri) and (water + t-butanol + dimethyl sulfoxide) are presented over a wide range of mixture compositions. All measurements have been conducted at 298.15 K and atmospheric pressure using two light sources: one in the visible (λ = 670 nm) and the other in the infrared (λ = 925 nm) spectrum. The performance of several mixing rules that are commonly used in modeling optical constants are examined. We demonstrate that the refractive indices of the associated ternary mixtures can be modeled with a relative error of about 0.9% by using the thermodynamical properties of the pure components. The concentration derivatives of the refractive index are an important parameter, as they are required for different experimental techniques. These derivatives have been determined from the experimental data on refractive indices. However, applying mixing rules for calculation of the derivatives of the refractive indices with respect to concentrations does not provide satisfactory results in the case of ternary mixtures of associated liquids.  相似文献   

14.
Excess molar enthalpy and excess molar volume at T =  298.15 K are reported for binary mixtures of (nonafluorobutylmethylether  +  butylmethylether, or nonane, or heptane, or pentane, or 1-propanol, or 2-propoxyethanol). Excess molar enthalpies of the mixture of (nonafluorobutylmethylether  +  1-pentanol) also are reported at T =  298.15 K. The results of excess molar enthalpy are endothermic and the results of excess molar volume are positive in the whole concentration for all the mixtures. The phase separation is found in the range of 0.15  < x <  0.92 for the 1-pentanol system. The results are explained by means of the destruction of the dipolar interactions and hydrogen bonds in the component liquids, the difference of the dispersion interaction, and the formation of the intermolecular hydrogen bonds between unlike molecules.  相似文献   

15.
Two aliphatic thioether polymers, poly[methanetetryl-tetra(thiomethylene)] (PMTTM) and poly(2,4-dithiopentanylene) (PDTP) were designed, synthesized, characterized and tested as cathode active materials. The chemical structure of polymers was confirmed by FT-IR, FT-Raman, and XPS spectral analysis. Both polymers were found to have electrochemical activity as cathode materials for rechargeable lithium battery by the electrochemical tests. The specific capacity of PMTTM was 504 mA h g−1 at the third cycle and faded to 200 mA h g−1 after 10 cycles; PDTP showed low and stable specific capacity around 100 mA h g−1 even after 50 cycles. The specific capacity of fully saturated aliphatic thioether polymers demonstrated that thioether bonds offered energy storage. It was proposed that thioether bond was oxidized to form thioether cations with the help of ether solvents.  相似文献   

16.
Correlations between volumetric properties and refractive index of binary mixtures of room temperature ionic liquids (RTILs) and organic solvents were examined. To this end, the density and refractive index for a set of these systems were measured at atmospheric pressure at 298.15 K throughout the composition range. These data were used to calculate excess volumes and refractive index deviations by using expressions firmly based on the physical significance of each quantity, fact that allowed the expected relations between the two quantities to be confirmed. Based on these results, the molar refraction and free or void volume of the mixtures are calculated with a view to estimating the relative contribution of both quantities to the excess molar volume. Once molar refraction was confirmed to exhibit a near-ideal behaviour in all mixtures, a method for predicting the density and refractive index of RTIL + organic solvent mixtures was developed; the results show that this procedure can be a highly useful alternative to the usually complex experimental methods available for the thermophysical characterization of these systems.  相似文献   

17.
This work presents (vapor + liquid) equilibrium (VLE) of binary mixtures containing methanol or ethanol and three imidazolium based ionic liquids: 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium acetate, and 1-butyl-3-methylimidazolium hydrogen sulfate. VLE measurements were carried out over the whole range of composition between (283.15 and 298.15) K using a static apparatus. Activity coefficients γi of these solvents in the ionic liquids have been determined from the VLE data and correlated using the NRTL model. The results show that the NRTL model can be applied successfully with systems containing ionic liquids.  相似文献   

18.
Plastic wastes coming from a waste packaging separation and classification plant have been pyrolysed in a semibatch nonstirred autoclave, swept by a continuous flow of N2. The plastic waste contains 39.5% PE, 34.2% PP, 16.2% PS and EPS, and some other minor materials. Temperatures in the range 400–600 °C have been explored, and it has been found that over 460 °C total thermal decomposition of the waste plastics takes place. Three catalysts have been tested: HZSM-5, red mud and AlCl3. Solid yields about 5–7%, liquid yields in the range 40–70% and gas yields in the range 12–24% were obtained. The liquid products were a mixture of C5–C20 compounds with a very high proportion of aromatics (>70%). Such liquids contain significant amounts of valuable chemicals such as styrene (20–40%), toluene (9–15%) and ethylbenzene (7–16%) and have rather high GCV (40–43 MJ kg−1). Thermal pyrolysis oils were a wax-like product which solidified at room temperature, whereas the oils obtained with any of the catalysts were less viscous and maintained in liquid state at room temperature. HZSM-5 favoured gas production and, increased the aromaticity and decreased the carbon number of the oils. AlCl3 did not modify pyrolysis yields but gave rise to lighter liquids. Red mud produced higher liquid yields and the liquids were less viscous, but it was not observed a clear effect on the carbon number of the oils.  相似文献   

19.
Pyrolysis of lignocellulosic biomass leads to an array of useful solid, liquid and gaseous products. Staged degasification is a pyrolysis-based conversion route to generate value-added chemicals from biomass. Because of different thermal stabilities of the main biomass constituents hemicellulose, cellulose and lignin, different temperatures may be applied for a step-wise degradation into valuable chemicals. Staged degasification experiments were conducted with deciduous (beech, poplar), coniferous (spruce) and herbaceous (straw) biomass. Thermogravimetry was used to estimate appropriate temperatures for a two-stage degradation process that was subsequently evaluated on bench-scale by moving bed and bubbling fluidised bed pyrolysis experiments. Degasification in two consecutive stages at 250–300 °C and 350–400 °C leads to mixtures of degradation products that originate from the whole biomass. The mixtures that were generated at 250–300 °C, predominantly contain hemicellulose degradation products, while the composition of the mixtures that were obtained at 350–400 °C, is more representative for cellulose. Lignin-derived fragments are found in both mixtures. Yields up to 5 wt% of the dry feedstock are obtained for chemicals like acetic acid, furfural, acetol and levoglucosan. Certain groups of thermal degradation products like C2–C4 oxygenates and phenols are formed in yields up to 3 wt%. Highest yields have been obtained for beech wood. Staged degasification is a promising pyrolysis-based route to valorise lignocellulosic biomass. Clear opportunities exist to increase product yields and selectivities by optimisation of reactor conditions, application of catalysts and specific biomass pretreatments like demineralisation and pre-hydrolysis.  相似文献   

20.
In this paper, experimental densities and dynamic viscosities of 1-ethyl-3-methylimidazolium based ionic liquids (ILs) with the anions acetate and dicyanamide are presented in a wide temperature range (298.15 to 343.15 K) at atmospheric pressure. Surface tension of these ILs was measured at T = 298.15 K. The effect of water and/or ethanol compositions on densities and dynamic viscosities of these ILs are studied in binary and ternary mixtures. A quadratic mixing rule was used to correlate binary and ternary liquid densities. The Eyring–Patel–Teja model, which is recommended for polar and aqueous systems, is used to correlate dynamic viscosity data over the whole range of compositions and temperatures in binary and ternary mixtures. Temperature-dependent interaction parameters are introduced here to account for the changes of viscosities with temperature showing good agreements with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号