首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 480 毫秒
1.
A phase diagram, describing the behavior of the polar lipid monoolein (MO), water, and ethyl acetate (EtAc), is here presented as well as results from small angle X-ray scattering. MO is found to have a solubility of 60 wt.% in EtAc at 20 °C. No macroscopic aggregation of MO can, initially, be detected in the binary MO/EtAc solution even though MO forms solid crystals in concentrated samples when times goes by. In case of the ternary system small amounts of water, mainly bound to the lipid head groups, can be incorporated in the liquid EtAc/MO phase as water has a limited solubility in EtAc. For EtAc/water mass ratios below 2/3 EtAc is present into the reversed bicontinuous cubic and lamellar phases present in the binary MO/water system. To conclude, EtAc is mainly partitioned to the lipid membranes, with minor effects on spontaneous curvature. Hence, simple EtAc-addition has an effect similar to dehydration. For EtAc/water ratios above 2/3 the liquid crystalline phases dissolve. The phase behavior is here discussed in view of related phase behaviors for water-miscible solvent/MO/water systems. For instance, an interpretation of the swelling behavior of the sponge phase (L3), present in the water-miscible solvent(s)/MO/water systems, shows that solvents partitioned to the polar domains strongly increases the spontaneous curvature of the MO-films. The reason is probably weaker hydrophobic interactions in interfacial regions. As expected, in case of water-miscible solvents, the ternary phase behaviors can be understood by consider water and water-miscible solvent as one “mixed solvent”.  相似文献   

2.
The phase behaviors of the subsystems of the ethyl acetate (EtAc)/monoolein/polyethylene glycol-poly(D,L-lactide-co-glycolide) (PLG)/water system have been determined. EtAc simultaneously solves MO and PLG in a liquid phase, denoted L. Lipid/polymer composite particles have here been formed by emulsification of such an L phase into aqueous solutions. Characterization, by means of confocal laser scanning microscopy, revealed that distinctive lipid domains appear inside the particles. In aqueous solutions, these lipid domains swell and finally leave the concentrated polymer matrix. The system exhibits a suitable phase behavior in order to form lipid/polymer composite particles. These composite particles may be interesting for drug delivery applications.  相似文献   

3.
The thermodynamic acidity constants of n-butanoic, n-pentanoic, n-hexanoic, and n-heptanoic acids were determined at 25°C in ternary water/dioxane/methanol mixtures. The results obtained show that the composite medium effect, expressed by a parameter b = dpK′/du (u being a variable expressing the solvent composition), depends on the ratio of the organic co-solvent concentrations. In the ternary mixtures, superposition of the various effects detected in the corresponding binary solvents (water/dioxane and water/methanol) enables simple interpolation formulae to be used to estimate the pKa values in solution with any ratio of the three solvents.  相似文献   

4.
Experimental solubilities of diazepam in binary and ternary solvents of polyethylene glycols 200 and 400 with N-methyl pyrrolidone and water at T = 298.2 K are reported. The Jouyban–Acree model was used to fit solubility data of diazepam in the binary and ternary solvent mixtures (106 data points) in which the overall mean relative deviations (OMRD %) is 13.1 % and the prediction OMRD % is 31.7 %. The combined version of the Jouyban–Acree model with Hansen solubility parameters was used for fitting and predicting the solubility data and the OMRDs % are 10.0 and 20.8 %, respectively. Also, the previously proposed trained versions of the Jouyban–Acree model were used for predicting the reported data in this work and all results are listed in the tables. The density of the solute-free solvent mixtures were measured and employed to calculate the constants of the Jouyban–Acree model and then the densities of the saturated solutions were predicted.  相似文献   

5.
6.
The solubilities of acetylpyrazine in seven pure solvents and one binary solvent mixture were determined by a dynamic analytic method at temperatures ranging from 268.15 to 308.15 K under atmospheric pressure. For pure solvents, the solubility of acetylpyrazine increases with increasing temperature and solvent polarity. For the binary solvent mixture of ethyl acetate and isopropanol, the solubility increases with increasing temperature and mole fraction of ethyl acetate. The solubility data were correlated with some thermodynamic models, including the modified Apelblat model, λh model, CNIBS/R-K model, and NRTL model. In addition, the relationship between solubility and solvent polarity was investigated by using the Arrhenius equation. All the models or equations gave satisfactory correlation results. The results showed that the solubility of acetylpyrazine generally rises with the increase of solvent polarity at the same temperature. Moreover, the dissolution thermodynamic properties of acetylpyrazine in different solvents were calculated and are discussed based on the NRTL model.  相似文献   

7.
Abstract

A new combination of four organic solvents is proposed for the optimization of TLC separations of basic drugs and alkaloids. The solvents are diethylamine (DEA), methanol (MeOH), chloroform (CHCl3) and ethylacetate (EtAc). They were selected from a collection of ten solvents used in Normal Phase TLC mobile phases recommended for the separation of alkaloids and basic drugs in the literature. The selection was based on the classification of solvents according to selectivity and solubility parameters. Excluded were apolar and weak solvents that show no selective (polar) properties and are used only for the adjustment of the solvent strength. Polar solvents from different selectivity groups were selected to combine as many as possible selective effects in one solvent system. The final choice was made considering the displacement theory for Liquid Solid Chromatography.  相似文献   

8.
The phase behavior of ternary systems (either a polymer solution in a mixed solvent or a polymer blend in a single solvent) was modeled theoretically. The modeling considers two specific features of polymers explicitly: chain connectivity and the ability to respond to changes in the molecular environment by conformational reorientation. Previously, this approach has been applied to polymer solutions in single solvents. Here it is generalized and the number of parameters is reduced to two per binary system. The calculation of the Gibbs energies of the ternary mixtures accounts for the composition dependencies of the binary interaction parameters. The following phenomena are reproduced realistically for polymer solutions in a mixed solvent and for solutions of two polymers in a common solvent: simplicity, co‐solvency, and co‐non‐solvency. The results nourish the hope that the new approach is capable of modeling phase diagrams for ternary systems by means of binary interaction parameters only.

  相似文献   


9.
In this paper, the acetone-cast poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-co-HFP)) membranes were prepared by isothermally vacuum-dried at 60 °C and were employed in pervaporation of methyl acetate (MeAc) or ethyl acetate (EtAc) dissolved water solutions. DSC study on the swelling process indicated that two states of both MeAc and EtAc in their swollen P(VDF-co-HFP) membranes might exist which were the ‘bound state’ and ‘bulk state’. In addition, relative to the pure EtAc, the pure MeAc had stronger interaction with the P(VDF-co-HFP) membrane, making for its higher solubility in and lower diffusivity through the membrane. However, there is a competition between the organic permeants/water interactions and the organic permeants/polymer interactions when the P(VDF-co-HFP) membrane was tested for its pervaporative separating properties. With respect to MeAc in its water mixtures, EtAc in its water mixtures had higher solubility in the membrane instead because of its weaker interaction with water. As a result, better separating properties (higher permeate flux and separation factor) when the P(VDF-co-HFP) membrane was in pervaporation of the EtAc/water mixtures were obtained.  相似文献   

10.
The capability of the extended forms, of two well established cosolvency models, i.e. the combined nearly ideal binary solvent/Redlich-Kister equation and the modified Wilson model, used to predict the solute solubility in non-aqueous ternary solvent mixtures is presented. These predictions are based on the measured solubilities of anthracene in binary solvent mixtures. As a result the values of average percent deviations were less than 2% for the anthracene solubility in ternary mixtures. This work was also extended to other cosolvency models, ie. the extended Hildebrand solubility approach and the mixture response surface method, which are also commonly used for correlating solubility data in ternary solvents. The accuracy of the models is compared with each other and also with a published solubility model for ternary mixtures. The results illustrate that all models produced comparable accuracy.  相似文献   

11.
The Jouyban-Acree model has been used to predict the solubility of paracetamol in water-ethanol-propylene glycol binary and ternary mixtures based on model constants computed using a minimum number of solubility data of the solute in water-ethanol, water-propylene glycol and ethanol-propylene glycol binary mixtures. Three data points from each binary solvent system and solubilities in neat solvents were used to calculate the binary interaction parameters of the model. Then the solubility at other binary solvent compositions as well as in a number of ternary solvents were predicted, and the mean percentage deviation (+/-S.D.) of predicted values from experimental solubilities was 7.4(+/-6.1)%.  相似文献   

12.
Fluorine substitution on a solute can have a significant effect on solute solubility in a given solvent and fluorine substitution on a solvent can also have a significant effect on solvent quality. The effect of fluorine is demonstrated with the phase behavior data for bis(p-tolyl)propane (BTP) compared to bis(p-tolyl)hexafluoropropane (BTHFP) in supercritical carbon dioxide, 1,1-difluoroethane (F152a), and 1,1,1,2-tetrafluoroethane (F134a). Semifluorinated BTHFP is more soluble than non-fluorinated BTP in all three solvents, especially CO2. The CO2–BTP system exhibits solid solubility behavior while the CO2–BTHFP system exhibits liquid–liquid–vapor (LLV) behavior near the critical point of CO2. Although the two dipolar hydrofluorocarbons (HFC) are better solvents than CO2 for these two aromatic solid compounds, F152a is the superior HFC solvent, especially for BTP, because F152a has a smaller molar volume and a larger effective dipole moment than F134a. LLV behavior is also observed for the F134a–BTP system near the critical point of F134a although the F134a–BTHFP, F152a–BTP, and F152a–BTHFP systems all appear to exhibit type-I phase behavior and no liquid–liquid immiscibility near the respective critical points.  相似文献   

13.
The phase diagram of the system N-methylmorpholine-N-oxide(NMMO)/H2O/cellulose has been measured at 80 °C by establishing a solubility map (observation of the mixtures under the microscope), by the analysis of coexisting phases and determining the critical point. These experiments manifest a continuous reduction of the two phase area existing for the subsystem H2O/cellulose upon the addition of NMMO, where a weight fraction of NMMO in the mixed solvent exceeding 75 wt% is required for Solucell 400 to reach the critical composition. The critical cellulose concentration is only 0.34 wt%, i.e., more than an order of magnitude lower than for the solutions of typical vinyl polymers in mixed solvents. All experimental observations can be well modeled on the basis of composition dependent binary interaction parameters by means of recently established mixing rules. For the subsystems H2O/cellulose and NMMO/water the corresponding data are known from independent earlier measurements. The adjustment of two parameters to the ternary phase diagram was required to obtain this information for NMMO/cellulose, the third binary subsystem.  相似文献   

14.
Nitroxynil(NIT) is a commonly used anti-liver fluke drug for cattle and sheep, Its solubility is closely related to its preparation. In this work, the molar solubility of NIT in nine pure solvents (methanol, ethanol, 1,2-propanediolethyl, isopropanol, ethyl acetate, acetonitrile, n-butanol, phemethylol) and two kinds of binary mixtures with different ratio(ethanol + phemethylol; ethanol + acetonitrile) was determined by shake flask method over the temperature from 278.15 ~ 323.15 K at atmosphere pressure. Results show that the solubility of NIT in all tested solvents was increased with raised temperature. In mono-solvents, the mole fraction solubility of NIT was highest in phemethylol and the solubility order is: phemethylol > acetonitrile > ethyl acetate > methanol > n-butanol > ethanol > 1,2-propanediolethyl > isopropanol > water. In binary solvents, the mole fraction solubility increased with increasing ratio of phemethylol/acetonitrile. In mono-solvents, the modified Apelblat equation, λh equation, Van't Hoff model were applied to correlate the solubility data. In binary solvents, the modified Apelblat equation, λh equation, GSM model and Jouyban-Acree model were to correlate the solubility data. Solubility order of NIT in nine pure solvent and two binary solvent systems were analysed by using the Hansen solubility parameter (HSP). Activity coefficient was to access the solute–solvent molecular interactions. In addition, the dissolution of NIT is an endothermic and entropy-friendly process, since thermodynamic parameters such as enthalpy, entropy, and apparent standard Gibbs free energy are all greater than zero. The results will supply some essential data on recrystallization process, purification and formulation development of NIT in pharmaceutical applications.  相似文献   

15.
韩艳春 《高分子科学》2013,31(7):1029-1037
The surface composition of poly(3-hexylthiophene-2,5-diyl) and fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PCBM) blend films could be changed by controlling the film formation process via using mixed solvents with different evaporation rates. The second solvent, with a higher boiling point than that of the first solvent and much better solubility for PCBM than P3HT, is chosen to mix with the first solvent with a lower boiling point and good solubility for both PCBM and P3HT. The slow evaporation rate of the second solvent provides enough time for PCBM to diffuse upwards during the solvent evaporation. Thus, the weight ratio of PCBM and P3HT (m PCBM/m P3HT) at surface of the blend films was varied from ca. 0.1 to ca. 0.72, i.e., it increases about seven times by changing from single solvent to mixed solvents. Meanwhile, the mixed solvents were in favor to form P3HT naonofiber network and enhance phase separation of P3HT/PCBM blend films. As a result, the power conversion efficiency of the device from mixed solvents with slow evaporation process was about 1.5 times of the one from single solvents.  相似文献   

16.
Accurate design of processes based on ionic liquids (ILs) requires knowledge of the phase behavior of the systems involved. In this work, the truncated perturbed chain polar statistical associating fluid theory (tPC-PSAFT) is used to correlate the phase behavior of binary and ternary IL mixtures. Both non-polar and polar solvents are examined, while methyl imidazolium ILs are used in all cases. tPC-PSAFT accounts explicitly for weak dispersion interactions, highly directive polar interactions between permanent dipolar and quadrupolar molecules and association between hydrogen bonding molecules. For mixtures of non-polar solvents, tPC-PSAFT predicts accurately the binary mixture data. For the case of polar solvents, a binary interaction parameter is fitted to the experimental data and the agreement between experiment and correlation is very good in all cases.  相似文献   

17.
Sugar based low-molecular-mass organogelator (LMOG) methyl-4,6-O-(p-nitrobenzylidene)-α-d-glucopyranoside, is a unique gelator because its small and weakly-interacting molecules can form large supramolecular structures in nonpolar, but also in polar, solvents and cause their gelation. The self-assembling properties of the gelator were studied in selected nonpolar and polar solvents. It was shown that the driving forces for both types of solvent are the intermolecular hydrogen bond interaction. The effect of the nature of the solvent on the thermal stability of the gels and on the three-dimensional network organization was determined. Different solvent parameters, such as dielectric constant, one-component solubility parameter, the polarity parameter and the Kamlet-Taft parameters were considered to quantify solvent effects on the gelation. Some correlation between these parameters and the gel stability, microstructure and the enthalpy of the phase transition were established. The effort to correlate the Kamlet-Taft parameters to the thermal stability and gelation ability is also possible but applies only to the studied gelator.  相似文献   

18.
We investigate how a small polar molecule, urea, can act to protect a phospholipid bilayer system against osmotic stress. Osmotic stress can be caused by a dry environment, by freezing, or by exposure to aqueous systems with high osmotic pressure due to solutes like in saline water. A large number of organisms regularly experience osmotic stress, and it is a common response to produce small polar molecules intracellularly. We have selected a ternary system of urea-water-dimyristoyl phosphatidylcholine (DMPC) as a model to investigate the molecular mechanism behind this protective effect, in this case, of urea, and we put special emphasis on the applications of urea in skin care products. Using differential scanning calorimetry, X-ray diffraction, and sorption microbalance measurements, we studied the phase behavior of lipid systems exposed to an excess of solvent of varying compositions, as well as lipid systems exposed to water at reduced relative humidities. From this, we have arrived at a rather detailed thermodynamic characterization. The basic findings are as follows: (i) In excess solvent, the thermally induced lipid phase transitions are only marginally dependent on the urea content, with the exception being that the P(beta) phase is not observed in the presence of urea. (ii) For lipid systems with limited access to solvent, the phase behavior is basically determined by the amount (volume) of solvent irrespective of the urea content. (iii) The presence of urea has the effect of retaining the liquid crystalline phase at relative humidities down to 64% (at 27 degrees C), whereas, in the absence of urea, the transition to the gel phase occurs already at a relative humidity of 94%. This demonstrates the protective effect of urea against osmotic stress. (iv) In skin care products, urea is referred to as a moisturizer, which we find slightly misleading as it replaces the water while keeping the physical properties unaltered. (v) In other systems, urea is known to weaken the hydrophobic interactions, while for the lipid system we find few signs of this loosening of the strong segregation into polar and apolar regions on addition of urea.  相似文献   

19.
20.
Asymmetric polysulfone membranes were prepared by wet phase inversion method with different demixing rate of casting solutions. The influent factor of demixing rate was focused on the polarity of additive in the polysulfone/N-methyl-2-pyrrolidone/water ternary system. With increasing the polarity of alcohols in the casting solution, the decrease in skin layer thickness was observed and then a poor separation performance of membranes can be obtained. It was found that the polar additive caused the rapidly demixing of casting solution in coagulation bath and formed porous asymmetric membranes with defective skin layer. In the other case, chloroform was used as the non-polar additive in casting solution. With increasing the mount of chloroform in the casting solution, the increase in skin layer thickness was observed and then lead to a good separation performance of these membranes. It was found that of the non-polar additive delays the demixing rate of casting solution in this ternary system. The separation performance of these asymmetric membranes were characterized by the measurement of dehydration of ethanol/water mixture by pervaporation and observed the morphology by scanning electron microscopy. It was found that the separation performance of asymmetric polysulfone membrane strongly depends on the polarity of adding solvent in polysulfone/N-methyl-2-pyrrolidone/water ternary system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号