首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
采用水基流变相辅助的固相法,以异质碳蔗糖和石墨为碳源,合成了LiMn0.8Fe0.2PO4/C复合材料,研究了不同石墨加入方式对所制复合材料电化学性能的影响,并对所制备的LiMn0.8Fe0.2PO4/C复合材料进行了X射线衍射(XRD)、比表面积测试、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等表征。结果表明,不同石墨包覆工艺对材料结构和电化学性能具有显著影响。前驱体煅烧后再加入石墨获得的样品纯度高,形貌呈均一的椭圆形,在0.1C下的放电比容量为149 mAh·g-1,达到其理论比容量的 87%;在 5C 下最大的放电比容量为 133 mAh·g-1;在 2C 倍率下经过 300 次循环后比容量维持在 127 mAh·g-1,衰减率仅为1.9%,表现出了优良的循环稳定性。  相似文献   

2.
通过水热合成的方法制备了不同质量百分比的LiMnPO4包覆LiMn2O4的复合材料,并且利用XRD、拉曼光谱、SEM、TEM以及充放电测试等手段,对其结构和电化学性能进行了表征。研究表明,适当量的LiMnPO4包覆,不仅可以增加材料的可逆比容量,还可以有效提高材料在55℃下的循环特性。1wt%LiMnPO4包覆的LiMn2O4在55℃下的可逆容量为109 mAh.g-1,是其初始容量的96%。此外,1wt%LiMnPO4包覆的LiMn2O4与未包覆的LiMn2O4相比,在倍率特性上也有明显的改善。  相似文献   

3.
以Mn(NO_3)_2、Fe(NO_3)_3·9H_2O、NH_4H_2PO_4、LiOH·H_2O为原材料,采用改进的溶胶凝胶法制备了具有高能量密度的Li Mn_(0.6)Fe_(0.4)PO_4/C材料。该方法通过金属和多种配体配位构筑的框架,把得到的一次纳米颗粒构筑为类球形的二次颗粒,即发挥了纳米材料优异的电化学性能,又提高了材料的压实密度,电池的能量密度可提升约30%。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、交流阻抗谱(EIS)、振实密度、粒度以及电化学测试等表征手段对材料的晶体结构、形貌和电化学性能进行了较系统的研究,结果表明此方法制备的LiMn_(0.6)Fe_(0.4)PO_4/C材料不仅具有较高的振实密度和电压平台,还具有优异的电化学性能:振实密度为1.3 g·cm~(-3),且在1C倍率下,放电中值电压为3.85 V,100次循环后,比容量仍有142.3 mAh·g~(-1),容量保持率为99.4%。  相似文献   

4.
Li3PO4包覆LiMn2O4正极材料的结构表征和电化学性能   总被引:1,自引:0,他引:1  
李敏  李荣华  王文继 《化学研究》2007,18(4):98-101
采用共沉淀法在尖晶石LiMn2O4颗粒表面包覆Li3PO4.XRD、SEM研究结果表明,包覆后的材料仍为尖晶石结构,粒径均匀.电化学性能测试表明,Li3PO4包覆层的存在,减少了正极材料与电解液的直接接触,抑制了高温下电解液对LiMn2O4材料的侵蚀,从而有效改善了高温下材料的循环性能.在40℃时,包覆样品的比容量衰减率都低于未包覆样品,其中包覆1%Li3PO4的样品的初始比容量为110.4mAh/g,50次循环后比容量为84.1mAh/g.  相似文献   

5.
采用溶胶凝胶法和还原氧化石墨法制备尖晶石LiMn2O4纳米晶和石墨烯纳米片,并采用冷冻干燥法制备了石墨烯/尖晶石LiMn2O4纳米复合材料,利用XRD、SEM、AFM等对其结构及表面形貌进行表征;利用CV、充放电、EIS研究纳米复合材料的电化学性能和电极过程动力学特征。结果表明:纳米LiMn2O4电极材料及其石墨烯掺杂纳米复合材料的放电比容量分别为107.16 mAh.g-1,124.30 mAh.g-1,循环100周后,对应容量保持率为74.31%和96.66%,石墨烯可显著改善尖晶石LiMn2O4电极材料的电化学性能,归结于其良好的导电性。纳米复合材料EIS上感抗的产生与半导体尖晶石LiMn2O4不均匀地分布在石墨烯膜表面所造成局域浓差有关,并提出了感抗产生的模型。  相似文献   

6.
古宁宇  何兴华  李洋 《电化学》2013,(2):146-150
由LiH2PO4和FeC2O4.2H2O作原料、柠檬酸为碳源,用水溶-蒸发法制备了LiFePO4/C正极样品.采用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)分析、观察样品.用充放电曲线和电化学交流阻抗(EIS)谱图测试LiFePO4/C电极.结果表明,700℃焙烧的LiFePO4/C样品(碳量3.03%,by mass)结晶度高、无杂相、颗粒粒径100 nm,其表面包覆约5 nm碳层.该电极0.5C、2C、5C和10C(1C=170 mA.g-1)倍率放电,其比容量分别为148.2 mAh.g-1、142.4 mAh.g-1、127.4 mAh.g-1和108.5 mAh.g-1,循环寿命曲线稳定.  相似文献   

7.
通过共沉淀法制备了球形LiNi0.5Mn1.5O4@Li3PO4复合材料,并采用X射线衍射(XRD)、扫描电镜(SEM)、红外光谱(FT-IR)、循环伏安(CV)、电化学阻抗谱(EIS)及充放电测试研究了其结构与电化学性能。XRD和SEM表明,Li3PO4包覆影响了球形LiNi0.5Mn1.5O4的晶格常数。CV和EIS表明,质量百分数5% Li3PO4包覆的LiNi0.5Mn1.5O4具有比纯LiNi0.5Mn1.5O4更高的锂离子嵌脱可逆性,更大的锂离子扩散系数和更小的电荷转移电阻,说明在锂离子扩散过程中,质量百分数5%Li3PO4包覆的LiNi0.5Mn1.5O4具有更高的电子电导率。充放电测试表明,原位Li3PO4改性提高了材料的电子电导率、电化学活性,进而提高了高倍率放电容量。质量百分数5% Li3PO4包覆的LiNi0.5Mn1.5O4提高的电化学性能归因于Li3PO4的包覆、纳米颗粒组成球形的粒径引起的高的电子电导率和小的电化学极化。  相似文献   

8.
通过共沉淀法制备了球形LiNi0.5Mn1.5O4@Li3PO4复合材料,并采用X射线衍射(XRD)、扫描电镜(SEM)、红外光谱(FT-IR)、循环伏安(CV)、电化学阻抗谱(EIS)及充放电测试研究了其结构与电化学性能.XRD和SEM表明,Li3PO4包覆影响了球形LiNi0.5Mn1.5O4的晶格常数.CV和EIS表明,质量百分数5% Li3PO4包覆的LiNi0.5Mn1.5O4具有比纯LiNi0.5Mn1.5O4更高的锂离子嵌脱可逆性,更大的锂离子扩散系数和更小的电荷转移电阻,说明在锂离子扩散过程中,质量百分数5%Li3PO4包覆的LiNi0.5Mn1.5O4具有更高的电子电导率.充放电测试表明,原位Li3PO4改性提高了材料的电子电导率、电化学活性,进而提高了高倍率放电容量.质量百分数5% Li3PO4包覆的LiNi0.5Mn1.5O4提高的电化学性能归因于Li3PO4的包覆、纳米颗粒组成球形的粒径引起的高的电子电导率和小的电化学极化.  相似文献   

9.
以偏硅酸锂、草酸亚铁为原料,通过机械球磨-固相烧结法制得了Li2FeSiO4/C正极材料.用X射线衍射(XRD)和扫描电子显微镜(SEM)表征观察材料的结构和形貌.恒流充放电测试电极电化学性能.结果表明,30oC下1.5~4.8 V电位范围,于10 mA·g-1电流密度恒流充放电测试,Li2FeSiO4/C电极首次放电容量达167 mAh·g-1,有良好的电化学性能.  相似文献   

10.
本文通过封装与包覆结构共同作用抑制多级孔Fe3O4在循环过程中的体积膨胀,提高Fe3O4电极材料的电化学性能。通过采用硬模板法将葡萄糖和尿素作为造孔剂合成具有多级孔结构的Fe3O4材料,再利用醛脂包覆系统在多级孔Fe3O4上均匀的包覆一层碳材料,随后使用氢化工程对体积膨胀率仅为~4%的TiO2进行氢化处理并提高TiO2的导电率,将氢化TiO2作为封装材料对碳包覆多级孔Fe3O4进行封装处理,制备出具有三维网络传输结构的H-TiO2-C-Fe3O4电极材料。结果表明,封装与包覆结构较好的缓解了H-TiO2-CFe3O4电极材料在充放电过程中的体积膨胀,在0.2 A·g...  相似文献   

11.
锂离子电池正极材料LiMn2O4的合成与晶体结构(英)   总被引:2,自引:0,他引:2  
Spinel LiMn2O4 powders were prepared using two-step synthesis method consisting of solid-state reaction method and citrate modified sol-gel method. The effects of the calcination temperature and the Li/Mn ratio of raw materials were studied on the physicochemical and electrochemical properties of the spinel LiMn2O4 powders, such as crystallinity, lattice constant and density. The title compound was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Polycrystalline LiMn2O4 powers calcined at 750 ℃ were found to be composed of very uniformly-sized microcrystal with an average particle size of 300 nm. The improvement in electrochemical properties was mainly attributed to the process of re-grinding by absolute alcohol.  相似文献   

12.
用溶胶凝胶法合成了Na+离子掺杂的Li_(1-x)Na_xMn_2O_4(x=0,0.01,0.03,0.05)。X射线衍射图表明Na+取代Li+进入Li_(1-x)Na_xMn_2O_4晶格中,扫描电镜图看出产物是粒径为100~300 nm的颗粒。恒流充放电测试结果表明,Li_(0.97)Na_(0.03)Mn_2O_4在2C倍率下循环100圈后放电容量保持率比未掺杂的LiMn_2O_4从51.2%提升到84.1%。循环伏安测试表明Na+离子掺杂降低了材料极化且增大了锂离子扩散系数。10C倍率下Li0.97Na0.03Mn2O4仍有79.0 m Ah·g-1的放电容量,高于未掺杂样品的52.1 m Ah·g~(-1)。Na+离子掺杂可以稳定材料结构并提高锂离子扩散系数,从而提高LiMn_2O_4的电化学性能,是一种可行的改性方法。  相似文献   

13.
用溶胶凝胶法合成了Na+离子掺杂的Li1-xNaxMn2O4(x=0,0.01,0.03,0.05)。X射线衍射图表明Na+取代Li+进入Li1-xNax Mn2O4晶格中,扫描电镜图看出产物是粒径为100~300 nm的颗粒。恒流充放电测试结果表明,Li0.97Na0.03Mn2O4在2C倍率下循环100圈后放电容量保持率比未掺杂的LiMn2O4从51.2%提升到84.1%。循环伏安测试表明Na+离子掺杂降低了材料极化且增大了锂离子扩散系数。10C倍率下Li0.97Na0.03Mn2O4仍有79.0 mAh·g-1的放电容量,高于未掺杂样品的52.1 mAh·g-1。Na+离子掺杂可以稳定材料结构并提高锂离子扩散系数,从而提高LiMn2O4的电化学性能,是一种可行的改性方法。  相似文献   

14.
以氢氧化锂、醋酸钴、醋酸镍和草酸为原料,采用低热固相反应法制备了锂离子电池正极材料LiCo0.8Ni0.2O2的前驱体。该前驱体在不同温度下焙烧制得LiCo0.8Ni0.2O2粉体样品。通过XRD和SEM技术对样品的结构和颗粒形貌进行了分析;采用BET法、激光散射技术和恒电流间歇滴定法(GITT)分别对比表面积、粒度分布和扩散系数等理化参数进行了测试。结果表明,样品颗粒是由许  相似文献   

15.
正交结构LixMnO2正极材料的合成及其电化学性能研究   总被引:3,自引:0,他引:3  
0引言随着社会的进步,人们对化学电源提出了高能量、长寿命、低成本、低环境污染的要求。1990年由日本Sony能源公司率先研制成功的锂离子电池可以部分满足上述要求,一经问世,便迅速在便携式电子设备、电动汽车等众多领域展示了广阔的应用前景,掀起了锂离子二次电池的研究热潮。  相似文献   

16.
首次将尖晶石相的纳米Fe3S4材料用作镁二次电池的正极材料。采用水热法一步合成了具有纳米结构的Fe3S4材料, 并采用XRD、SEM测试手段对产物的物相、形貌进行了表征。实验结果表明, 在160 ℃能够合成纯相的Fe3S4材料, 该材料具有银耳状纳米结构。电化学测试结果显示, 水热法合成的纳米Fe3S4材料能够在镁二次电池体系中进行有效的可逆充放电, 放电平台电压为0.9 V, 首次放电容量高达267 mAh· g-1, 50次循环后衰减至110 mAh· g-1。电化学交流阻抗测试结果表明镁离子能够在Fe3S4晶格中扩散。  相似文献   

17.
首次将尖晶石相的纳米Fe3S4材料用作镁二次电池的正极材料。采用水热法一步合成了具有纳米结构的Fe3S4材料, 并采用XRD、SEM测试手段对产物的物相、形貌进行了表征。实验结果表明, 在160 ℃能够合成纯相的Fe3S4材料, 该材料具有银耳状纳米结构。电化学测试结果显示, 水热法合成的纳米Fe3S4材料能够在镁二次电池体系中进行有效的可逆充放电, 放电平台电压为0.9 V, 首次放电容量高达267 mAh·g-1, 50次循环后衰减至110 mAh·g-1。电化学交流阻抗测试结果表明镁离子能够在Fe3S4晶格中扩散。  相似文献   

18.
熔融盐法制备LiMn2O4材料的合成条件研究   总被引:1,自引:0,他引:1  
采用熔融盐法制备锂离子电池正极材料LiMn2O4,对制备过程中熔融盐种类、焙烧时间和焙烧温度等影响因素进行了系统研究。通过XRD、SEM和充放电测试,研究了产物的组成结构、形貌及电化学性能。研究结果表明,合成的LiMn2O4样品具有完整的尖晶石结构;样品的粒径分布范围小,平均粒径为几百纳米;优化实验条件之后制备得到的材料,在电压范围3.3~4.3 V,充放电电流值为60 mA·g-1(0.5C)时  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号