首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Vibrational Spectroscopy》2010,52(2):205-212
Research has been carried out to determine the potential of partial least squares (PLS) modeling of mid-infrared (IR) spectra of crude oils combined with the corresponding 1H and 13C nuclear magnetic resonance (NMR) data, to predict the long residue (LR) properties of these substances. The study elaborates further on a recently developed and patented method to predict this type of information from only IR spectra. In the present study, PLS modeling was carried out for 7 different LR properties, i.e., yield long-on-crude (YLC), density (DLR), viscosity (VLR), sulfur content (S), pour point (PP), asphaltenes (Asph) and carbon residue (CR). Research was based on the spectra of 48 crude oil samples of which 28 were used to build the PLS models and the remaining 20 for validation. For each property, PLS modeling was carried out on single type IR, 13C NMR and 1H NMR spectra and on 3 sets of merged spectra, i.e., IR + 1H NMR, IR + 13C NMR and IR + 1H NMR + 13C NMR. The merged spectra were created by considering the NMR data as a scaled extension of the IR spectral region. In addition, PLS modeling of coupled spectra was performed after a Principal Component Analysis (PCA) of the IR, 13C NMR and 1H NMR calibration sets. For these models, the 10 most relevant PCA scores of each set were concatenated and scaled prior to PLS modeling. The validation results of the individual IR models, expressed as root-mean-square-error-of-prediction (RMSEP) values, turned out to be slightly better than those obtained for the models using single input 13C NMR or 1H NMR data. For the models based on IR spectra combined with NMR data, a significant improvement of the RMSEP values was not observed neither for the models based on merged spectra nor for those based on the PCA scores. It implies, that the commonly accepted complementary character of NMR and IR is, at least for the crude oil and bitumen samples under study, not reflected in the results of PLS modeling. Regarding these results, the absence of sample preparation and the straightforward way of data acquisition, IR spectroscopy is preferred over NMR for the prediction of LR properties of crude oils at site.  相似文献   

2.
Raman and infrared (IR) spectroscopy are complementary spectroscopic techniques. However, measurement of Raman and IR spectra are commonly carried out on separate instruments. A dispersive system that enables both Raman spectroscopy and NIR spectroscopy was designed, built, and tested. The prototype system measures spectral ranges of 2600–300 cm−1 and 752–987 nm for Raman and NIR channels, respectively. A wavelength accuracy better than 0.6 nm and spectral resolution better than 1 nm (14.4 cm−1 for Raman channel) could be achieved with our configuration. The linearity of spectral response was better than 99.8%. The intensity stability of the instrument was found to be 0.7% and 0.4% for Raman and NIR channels, respectively. The performance of the instrument was evaluated using binary aqueous solutions of ethanol and ovalbumin. It was found that ethanol concentrations (2–10%) could be predicted with a root mean squared error of prediction (RMSEP) of 0.45% using Raman peak height at 882.2 cm−1. Quantification of ovalbumin concentration (8–16 g/L) in aqueous solutions and in denatured states yielded RMSEP values of 1.05 g/L and 0.74 g/L, respectively. Using concentration as external perturbation in two-dimensional correlation spectroscopy (2DCOS), heterospectral correlation analysis revealed the relationship between NIR and Raman spectra.  相似文献   

3.
A three-step infrared (IR) macro-fingerprint method combining conventional IR spectra, and the secondary derivative spectra with two-dimensional infrared correlation spectroscopy (2D-IR), was developed to analyze Spirulina powder before and after gamma irradiation. In the IR spectra, most of the absorption peaks of samples irradiated at 1, 2.7, 6, and 10.4 kGy had lower intensities than the non-irradiated ones, whereas peaks at 1152, 1078, and 1051 cm−1 were slightly enhanced with irradiation at 2.7, 6, and 10.4 kGy. Their second derivative spectra amplified the differences and revealed that irradiation affected the C=O band of carboxylic acid and esters, and the N–H band of proteins. The peaks at 1746 and 1741 cm−1, and those at 1730 and 1725  cm−1 became two broad peaks. Meanwhile, the three sharp peaks at 1548 cm−1, 1544 cm−1 and 1536 cm−1 changed to two broad peaks at around 1547 and 1534 cm−1 after irradiation at doses higher than 1 kGy. The characteristic IR bands from 1700 cm−1 to 1600 cm−1, which represent the C=O band in proteins, also have different shapes and intensities after irradiation. The finding indicated that irradiation affected the secondary structures of protein which was confirmed by curve fitting results. During the process of increasing the temperature from 50 to 210 °C, the ratio of amide I to II in absorption intensities in the 2D-IR spectra of the irradiated samples varied with different response for different samples. Saccharides in Spirulina powder had a higher thermostability than proteins, but the autopeaks of irradiated samples did show differences from the non-irradiated sample. The intensity of autopeaks at 1012 cm−1 increased dramatically in the irradiated samples while that of peaks at 1053, 1071, and 1083 cm−1 decreased after irradiation. Based on the three-step IR macro-fingerprint method, irradiated Spirulina powder samples were successfully and fast identified and discriminated.  相似文献   

4.
《Chemical physics letters》2006,417(1-3):266-271
The photo-induced ring-opening reaction C  E of a photochromic indolyl-fulgimide is investigated by sub-picosecond pump–probe spectroscopy in the visible and infrared spectral range. The thermally stable C-isomer shows a pronounced absorption in the visible spectral range without spectral overlap with the absorption of the E- and Z-isomer. The comparison of infrared and visible transient absorption data allows to assign the observed exponential 2.1 ps dynamics to the ring-opening reaction and the non-exponential 10–40 ps component to the cooling of the hot molecules. The transient absorption spectra taken 80 ps after photo-excitation are identical with the steady state difference spectra.  相似文献   

5.
《Vibrational Spectroscopy》2007,45(2):273-278
A solvent free, fast and environmentally friendly near infrared-based methodology (NIR) was developed for pesticide determination in commercially available formulations. This methodology was based on the direct measurement of the diffuse reflectance spectra of solid samples and a multivariate calibration model (partial least squares, PLS) to determine the active principle concentration in commercial formulations. The PLS calibration set was built on using the spiked samples by mixing different amounts of pesticide standards and powdered samples. Buprofezin, Diuron and Daminozide were used as test analytes. Concentration of Buprofezin in the samples was calculated employing a 4-factors PLS calibration using the spectral information in the range between 2231–2430 and 1657–1784 nm. For Diuron determination a 1-factor PLS calibration model using the spectral range 1110–2497 nm, after a linear removed correction. Daminozide determination was carried out employing a 4-factors PLS model using the spectral information in the ranges 1644–1772 and 2014–2607 nm without baseline correction. The root mean square errors of prediction (RMSEP) found were 1.1, 1.7 and 0.7% (w/w) for Buprofezin, Diuron and Daminozide determination, respectively. The developed PLS-NIR procedure allows the determination of 120 samples/h, does not require any sample pre-treatment and avoids waste generation.  相似文献   

6.
This work investigates the potential of high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of bromine in polymers, which could be interesting in view of the current regulations restricting the use of organobrominated compounds. The method developed is based on the addition of Ca (300 μg) and Pd (30 μg) to favor the formation of CaBr, which is monitored at the main molecular “lines” (rotational spectra) found in the vicinity of 625.315 nm.It was found that accurate results could be obtained for all the samples investigated (polyethylene, polypropylene and acrylonitrile butadiene styrene certified reference materials) using any of the lines studied and constructing the calibration curve with aqueous standards. Furthermore, the combined use of the main four CaBr lines available in the spectral area simultaneously monitored permits to easily expand the linear range up to 2000 ng, provides a limit of detection of 1.8 ng (1.8 μg g 1 for a mass of 1 mg) and further improves precision to values between 3–7% RSD. Overall, the method proposed seems suited for the fast and simple control of these types of samples (approximately 10 min for sample are required), circumventing the traditional problems associated with sample digestion (e.g., losses of volatile compounds), and providing sufficient sensitivity to easily comply with regulations.  相似文献   

7.
《Solid State Sciences》2007,9(3-4):267-273
Gadolinium(III) tripodal Schiff base (tris(((5-chlorosalicylidene)amino)ethyl)amine) complex has been obtained and investigated by infrared spectroscopy (IR), magnetic susceptibility, and electron paramagnetic resonance (EPR) methods. Comparison of IR bands in ligand and gadolinium complex confirmed the formation of the gadolinium complex and allowed to propose its structure. Both electron ionization and electron spray molecular spectroscopy spectra confirmed the [1:1] proportion of a ligand to metal in gadolinium tripodal Schiff base complex sample. IR spectroscopy and TG–DTA excluded the presence of water molecule in the metal coordination sphere. X-ray powder analysis applying Fullprof computer program has shown that the investigated sample was monophase with the monoclinic symmetry of the unit cell having the lattice constants: a = 10.028(4) Å, b = 13.282(5) Å, c = 21.20(1) Å and β = 101.58(4)°. Space group P21/c, Z = 4. EPR spectra of the complex have been registered in the 4–300 K temperature range. Each spectrum has been fitted using EPR–NMR computer program and the values of the spin-Hamiltonian parameters at each temperature have been calculated. Temperature dependence of the integrated intensity of the EPR spectrum allowed revealing the magnetic interactions in the spin system of this compound. Comparison of the temperature dependence of dc magnetic susceptibility (χ) and EPR susceptibility (χEPR) showed significant differences between these quantities due to the presence of short-lived clusters with a non-magnetic ground state.  相似文献   

8.
The present investigation reports the effect of influence of aluminum ions on radiation damage of strontium borosilicate glasses studied by means of spectroscopic (viz., optical absorption (OA), infrared and Raman spectra). The composition of the glasses chosen for the study is 40SrO–xAl2O3–(15-x) B2O3–40SiO2 (x = 5, 7.5, 10), all in mol%. The glasses were synthesized by conventional melt quenching method. Later, the samples were exposed to gamma (γ) radiation dose of strengths 10 kGy and 30 kGy with a dose rate of 1.5 Gy/s using 60Co as radiation source. The infrared spectra (IR), Raman spectra and optical absorption (OA) spectra of the samples were recorded at ambient temperature before and after irradiation. The OA spectra of the pre-irradiated samples do not exhibit any absorption bands in the UV–vis regions and IR and Raman spectra exhibited conventional vibrational bands due to different borate, silicate AlO4 and AlO6 structural units. The OA spectra of post irradiated samples exhibited a broad absorption band in the wavelength region 600–750 nm; it is attributed to electron trapped color centers. The intensity of this peak is observed to increase with increase of the γ-ray dose. Considerable changes in the intensities of various bands in the IR and Raman spectra were also observed. The changes were explained based on structural modifications taking place in the glass network due to γ-ray irradiation and finally it is concluded that the glasses mixed with 10.0 mol% of Al2O3 are relatively more radiation resistant.  相似文献   

9.
The paper presents the study of selected montmorillonite standards by Raman spectroscopy and microscopy supported by elemental analysis, X-ray powder diffraction analysis and thermal analysis. Dispersive Raman spectroscopy with excitation lasers of 532 nm and 780 nm, dispersive Raman microscopy with excitation laser of 532 nm and 100× magnifying lens, and Fourier Transform-Raman spectroscopy with excitation laser of 1064 nm were used for the analysis of four montmorillonites (Kunipia-F, SWy-2, STx-1b and SAz-2). These mineral standards differed mainly in the type of interlayer cation and substitution of octahedral aluminium by magnesium or iron. A comparison of measured Raman spectra of montmorillonite with regard to their level of fluorescence and the presence of characteristic spectral bands was carried out. Almost all measured spectra of montmorillonites were significantly affected by fluorescence and only one sample was influenced by fluorescence slightly or not at all. In the spectra of tested montmorillonites, several characteristic Raman bands were found. The most intensive band at 96 cm−1 belongs to deformation vibrations of interlayer cations. The band at 200 cm−1 corresponds to deformation vibrations of the AlO6 octahedron and at 710 cm−1 can be assigned to deformation vibrations of the SiO4 tetrahedron. The band at 3620 cm−1 corresponds to the stretching vibration of structural OH groups in montmorillonites.  相似文献   

10.
《Vibrational Spectroscopy》2007,43(1):254-259
The low-frequency region of the infrared and Raman spectra of nitric acid hydrates is analyzed. Theoretical calculations of the vibrational normal modes of the crystals of nitric acid monohydrate and the β-phases of the dihydrate and trihydrate are carried out, focusing the results in the regions below 175 cm−1 and near the symmetric stretch of the nitrate ion NO3, around 1000–1100 cm−1. A prediction of the corresponding infrared spectra is presented. A joint study is performed of the calculated normal modes, the predicted IR spectra, and the recently published Raman spectra of these compounds, based on symmetry considerations and using the atomic displacements associated to each normal mode as a further source of information. Although most of the modes present a strong mixture of atomic motions, assignments can be proposed for some of the vibrations.  相似文献   

11.
A new X-ray pinhole camera for the Energy Dispersive X-ray Fluorescence (ED-XRF) imaging of materials with high-energy and high-spatial resolution, was designed and developed. It consists of a back-illuminated and deep depleted CCD detector (composed of 1024 × 1024 pixels with a lateral size of 13 μm) coupled to a 70 μm laser-drilled pinhole-collimator, positioned between the sample under analysis and the CCD. The X-ray pinhole camera works in a coaxial geometry allowing a wide range of magnification values.The characteristic X-ray fluorescence is induced on the samples by irradiation with an external X-ray tube working at a maximum power of 100 W (50 kV and 2 mA operating conditions).The spectroscopic capabilities of the X-ray pinhole camera were accurately investigated. Energy response and energy calibration of the CCD detector were determined by irradiating pure target-materials emitting characteristic X-rays in the energy working-domain of the system (between 3 keV and 30 keV).Measurements were performed by using a multi-frame acquisition in single-photon counting. The characteristic X-ray spectra were obtained by an automated processing of the acquired images. The energy resolution measured at the Fe–Kα line is 157 eV.The use of the X-ray pinhole camera for the 2D resolved elemental analysis was investigated by using reference-patterns of different materials and geometries. The possibility of the elemental mapping of samples up to an area of 3 × 3 cm2 was demonstrated.Finally, the spatial resolution of the pinhole camera was measured by analyzing the profile function of a sharp-edge. The spatial resolution determined at the magnification values of 3.2 × and 0.8 × (used as testing values) is about 90 μm and 190 μm respectively.  相似文献   

12.
We demonstrate the application of differential pulse voltammetry (DPV) for the electrochemical detection of perchloroethylene (PCE) on an unmodified glassy carbon electrode surface. Detection sensitivity was substantially improved using DPV, in which dechlorination was denoted by a cathodic peak observed at approximately − 0.6 V (vs Ag/AgCl). Peak current intensity was found to correlate linearly with concentration over a tested range of 0 to 10 μM. The utility of this technique was subsequently evaluated for PCE-spiked environmental samples containing either Methylobacterium adhaesivum (1 × 106 cells/mL) or creek water (10% v/v). In all environmental samples, a linear dynamic range was also observed from approximately 0 to 10 μM. The limit of detection was determined to be 0.3 μM in blank buffer, 0.4 μM in bacteria-containing samples and 1.2 μM in creek water samples.  相似文献   

13.
We have investigated the Au–Si(1 1 1) interface as a function of the Au coverage by the core-level photoemission spectroscopy. With increasing the Au coverage, the spectral features in the Si 2p core-level changed remarkably and some fine structures in both Si 2p and Au 4f spectra were observed. Based on the curve fitting analysis, the Si 2p and Au 4f spectra at more than 20 Å Au coverage were decomposed into three chemically different components, respectively. The assignments of their components were performed. In addition, we have compared these results for the Au–Si(1 1 1) interface with our previous study for the Au–Si(1 0 0) interface. It was found that the electronic structures for the Au–Si(1 1 1) interface is essentially identical to those of the Au–Si(1 0 0) interface except at the initial Au deposition.  相似文献   

14.
《Vibrational Spectroscopy》2009,51(2):169-177
Effects of the meso-substituents and central metals on the molecular structures, atomic charges, molecular orbital energy gaps, electronic absorption spectra, and infrared (IR) spectra of 12 meso-tetrasubstituted porphyrin complexes including metal-free porphyrins H2P or (Por = TPP, TFPP, TClPP, TPyP) (14) and their metal complexes MPor (M = Mg, Zn; Por = TPP, TFPP, TClPP, TPyP) (512) [TPP = meso-tetrakis(phenyl)porphyrinate; TFPP = meso-tetrakis(4-fluorophenyl)porphyrinate; TClPP = meso-tetrakis(4-chlorophenyl)porphyrinate; TPyP = meso-tetrakis(4-pyridyl) porphyrinate] are systematically studied by density functional theory calculations at the B3LYP/6-31G(d) level. Good consistency was found between the calculated molecular structures and the experimental X-ray crystallography ones for 1, 3, and 4, and between the simulated electronic absorption and IR spectra and the experimental ones for 1 and 4. The calculation results reveal that introducing substituents at the meso positions of porphyrin induces increasing change in the molecular structures, atomic charges distribution, HOMO and LUMO energy, electronic absorption spectra, and IR spectra along with the increase in the electron-withdrawing ability of substituents in the order of phenyl, 4-fluorophenyl, 4-chlorophenyl, and pyridyl group. Furthermore, the central metal in porphyrins displays much significant influence on the structure and spectroscopic properties of meso-substituted porphyrin complexes. The electronic absorption and IR spectra of 112 are compared and assigned in detail. The present work should be not only helpful towards understanding the meso-substitutional and central metallic effects on the structure and spectroscopic properties of meso-substituted porphyrin complexes, but also useful in correctly assigning electronic absorption and IR spectra for porphyrin complexes.  相似文献   

15.
The effect of gamma irradiation on the content of total phenolic compounds, especially quercetin (Q), in onion (Allium cepa L.) skin was investigated. Onion skin extracts contained two predominant flavonoid compounds, Q and quercetin-4′-glucoside (Q4′G). After 10 kGy gamma irradiation, the yield of Q in the extracts increased significantly from 36.8 to 153.9 μg/ml of the extract, and the Q4′G content decreased slightly from 165.0 to 134.1 μg/ml. In addition, the total phenolic compound content also increased after irradiation at 10 kGy, from 228.0 μg/g of fresh weight to 346.6 μg/g; negligible changes (237.1–256.7 μg/g) occurred at doses of up to 5 kGy. As we expected, radical-scavenging activity was enhanced remarkably (by 88.8%) in the 10 kGy irradiated sample. A dose-dependent increase in the peak intensity of the electron paramagnetic resonance (EPR) spectra was observed in all irradiated samples, with a maximum increase at 10 kGy. The intensity relative to that of the control was 0.15, and it increased to 1.10 in 10 kGy irradiated samples. The optimum gamma irradiation dose, which is sufficient to break the chemical or physical bonds and release soluble phenols of low molecular weight in onion skin, is about 10 kGy.  相似文献   

16.
The fluorescence of ciprofloxacin (CIP) in HAc–NaAc buffer solution and the presence of cetyltrimethylammonium bromide (CTMAB) enhanced visibly with adding Al(III) and La(III). This enhanced fluorescence spectra were studied, and a new co-luminescence system of CIP + Al(III) + La(III) + CTMAB was discovered. There was a linear relationship between the enhanced fluorescence intensity and the concentration of CIP in the range of 0.50–80.2 μg l?1 under the optimized condition. A novel enhanced fluorescence method for the determination of trace CIP was established by using this co-luminescence system. The detection limit of the proposed method was 0.17 μg l?1 for CIP. This method is simple, rapid and sensitive. The CIP in milk samples were analyzed by the proposed method with satisfactory results. The relative standard deviation and the recovery were in ranges of 3.21–4.34% and 97.1–100.1%, respectively. The mechanism of the co-luminescence reaction and the reasons for fluorescence enhancement has been discussed.  相似文献   

17.
Raman and laser-induced breakdown spectroscopy is integrated into a single system for molecular and elemental microanalyses. Both analyses are performed on the same ~ 0.002 mm2 sample spot allowing the assessment of sample heterogeneity on a micrometric scale through mapping and scanning. The core of the spectrometer system is a novel high resolution dual arm Echelle spectrograph utilized for both techniques. In contrast to scanning Raman spectroscopy systems, the Echelle–Raman spectrograph provides a high resolution spectrum in a broad spectral range of 200–6000 cm? 1 without moving the dispersive element. The system displays comparable or better sensitivity and spectral resolution in comparison to a state-of-the-art scanning Raman microscope and allows short analysis times for both Raman and laser induced breakdown spectroscopy. The laser-induced breakdown spectroscopy performance of the system is characterized by ppm detection limits, high spectral resolving power (15,000), and broad spectral range (290–945 nm). The capability of the system is demonstrated with the mapping of heterogeneous mineral samples and layer by layer analysis of pigments revealing the advantages of combining the techniques in a single unified set-up.  相似文献   

18.
《Vibrational Spectroscopy》2007,43(2):395-404
The IR spectra (4000–400 cm−1) of neat and isotopically substituted (ND/OD  10% D and ≅30% D) polycrystalline l-serine (α-amino-β-hydroxypropionic acid; HO–CH2–CH(NH3)+–COO) were recorded in the temperature range 300–10 K and assigned. The isotopic-doping/low-temperature methodology, which allows for decoupling of individual proton vibrational modes from the crystal bulk vibrations, was used for estimating the lengths and energies of the different H-bonds present in l-serine crystal. To this end, the frequency shifts observed in both the NH/OH stretching and out-of-plane bending spectral regions (relatively to reference values for these vibrations in non-hydrogen-bonded l-serine molecules) were used, together with previously developed empirical correlations between these spectral parameters and the H-bond properties. In addition, the room-temperature Raman spectrum (4000–150 cm−1) of a single crystal of neat l-serine was also recorded and interpreted. A systematic comparison was made between the spectroscopic data obtained currently for l-serine and previously for dl-serine, revealing that the vibrational spectra of the two crystals reflect well the different characteristics of their hydrogen-bond networks, and also correlate accurately with the different susceptibility of the two crystals to pressure-induced strain.  相似文献   

19.
《Vibrational Spectroscopy》2007,43(2):440-446
Procedures for data acquisition and data processing are evaluated for the optimal computation of absorbance values based on Fourier transform near-infrared transmission spectra. Samples consisting of physiological levels (1–20 mM) of glucose in an aqueous matrix of variable levels of bovine serum albumin and triacetin are studied in the combination spectral region (5000–4000 cm−1). The weak glucose signals in this region define a challenging analysis that is extremely sensitive to the effects of instrumental drift. The impact of different procedures for obtaining absorbance estimates is evaluated in the context of multivariate calibration models based on partial least-squares (PLS) regression. Replicate calibration and prediction data acquired over 6 months are used to study the robustness of PLS models with respect to time. The recommended protocol for the absorbance calculations is based on the collection of a large group of individual background spectra during the instrumental warm-up period. Seven procedures are tested for obtaining optimal backgrounds for use with either the calibration or prediction data sets. When the developed methodology is employed, standard errors of prediction are maintained in the range of 1.0 mM for spectra acquired up to 6 months after the collection of the calibration data. This level of performance compares favorably to daily internal cross-validation errors of 0.5–0.9 mM.  相似文献   

20.
This study determined iodine value (IV) and free fatty acids (FFA) content of four different animal fat wastes and their blends using Fourier transform near-infrared spectroscopy (FT-NIR). Chemometric analysis by partial least squares (PLS) regression was used to correlate spectral data with IV and FFA reference values of the samples. The effects of four spectra pre-processing (first derivative (FD), second derivative (SD), multiplicative scatter correction (MSC) and vector normalization (VN)) methods were investigated to predict the reproducibility and robustness of the PLS-NIR model developed. A set of 70% of animal fat wastes and their blends were used for developing PLS calibration models for measuring IV and FFA content using the remaining 30% samples as an independent test set validation. The coefficient of determination (R2), the root mean square error estimation (RMSEE), and the residual prediction deviation (RPD) were used as indicators for the predictability of the PLS models. PLS-NIR models developed using first derivative and second derivative spectral preprocessing methods were the best for both IV and FFA content analysis (For IV, FD; R2 = 0.9870, RMSEE = 1.40 gI2/100 g, RPD = 8.76, SD; R2 = 0.9892, RMSEE = 1.28 gI2/100 g, RPD = 9.64 while For FFA, FD; R2 = 0.9991, RMSEE = 0.195%, RPD = 34.00, SD; R2 = 0.9993, RMSEE = 0.182%, RPD = 36.8). Overall, the results of this study demonstrate the suitability of FT-NIR spectroscopy for the quality control analysis of feedstocks for biodiesel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号