首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fractional order quaternion-valued neural networks are a type of fractional order neural networks for which neuron state, synaptic connection strengths, and neuron activation functions are quaternion. This paper is dealing with the Mittag-Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field. The fractional order quaternion-valued neural networks are separated into four real-valued systems forming an equivalent four real-valued fractional order neural networks, which decreases the computational complexity by avoiding the noncommutativity of quaternion multiplication. Via some fractional inequality techniques and suitable Lyapunov functional, a brand new criterion is proposed first to ensure the Mittag-Leffler stability for the addressed neural networks. Besides, the combination of quaternion-valued adaptive and impulsive control is intended to realize the asymptotically synchronization between two fractional order quaternion-valued neural networks. Ultimately, two numerical simulations are provided to check the accuracy and validity of our obtained theoretical results.  相似文献   

2.
研究了具有时变时滞的分数阶四元数神经网络的投影同步问题.该文不将分数阶四元数神经网络系统转化成两个复值系统或四个实值系统,而是将四元数系统当做一个整体进行处理.在合适的控制器下,通过构造合适的Lyapunov函数,并利用一些不等式技巧,得到了具有时变时滞分数阶四元数时滞神经网络投影同步的充分性判据.最后,通过数值仿真实例验证了所得结论的有效性和可行性.  相似文献   

3.
This paper deals with the problems of quasi-projective synchronization (QPS) and finite-time synchronization (FTS) for a kind of delayed fractional-order BAM neural networks (DFOBAMNNs). In order to reach the goals of synchronization and more accurately gauge of settling time and error level, several fresh quantized controllers are structured to make the utmost of confined communication resources. Then, based on the finite-time theorem, quantized control strategy, Lyapunov function theory and properties of Mittag–Leffler function as well as inequality analysis techniques, some plentiful criteria are formed to set up a relation between control gains and quantization parameters. In addition, the corresponding error bound of QPS and guages of the settling time on FTS are also given. Finally, a few numerical examples are introduced to validate the effectiveness of the presented control protocols.  相似文献   

4.
In this paper, we investigate the synchronization problems of chaotic neural networks with mixed time delays. We first establish the sufficient conditions for synchronization of identical chaotic neural networks with mixed time delays via linear output feedback control. To overcome the difficulty that complete synchronization between nonidentical chaotic neural networks cannot be achieved only by utilizing output feedback control, we use a sliding mode control approach to study the synchronization of nonidentical chaotic neural networks with mixed time delays, where the parameters and functions are mismatched. Numerical simulations are carried out to illustrate the main results.  相似文献   

5.
-In this paper, we investigate the synchronization problems of chaotic fuzzy cellular neural networks with time-varying delays. To overcome the difficulty that complete synchronization between non-identical chaotic neural networks cannot be achieved only by utilizing output feedback control, we use a sliding mode control approach to study the synchronization of non-identical chaotic fuzzy cellular neural networks with time-varying delays, where the parameters and activation functions are mismatched. This research demonstrates the effectiveness of application in secure communication. Numerical simulations are carried out to illustrate the main results.  相似文献   

6.
For neural networks with all the parameters unknown, we focus on the global robust synchronization between two coupled neural networks with time-varying delay that are linearly and unidirectionally coupled. First, we use Lyapunov functionals to establish general theoretical conditions for designing the coupling matrix. Neither symmetry nor negative (positive) definiteness of the coupling matrix are required; under less restrictive conditions, the two coupled chaotic neural networks can achieve global robust synchronization regardless of their initial states. Second, by employing the invariance principle of functional differential equations, a simple, analytical, and rigorous adaptive feedback scheme is proposed for the robust synchronization of almost all kinds of coupled neural networks with time-varying delay based on the parameter identification of uncertain delayed neural networks. Finally, numerical simulations validate the effectiveness and feasibility of the proposed technique.  相似文献   

7.
In this paper, on the basis of the Lyapunov stability theory and finite‐time stability lemma, the finite‐time synchronization problem for memristive neural networks with time‐varying delays is studied by two control methods. First, the discontinuous state‐feedback control rule containing integral part for square sum of the synchronization error and the discontinuous adaptive control rule are designed for realizing synchronization of drive‐response memristive neural networks in finite time, respectively. Then, by using some important inequalities and defining suitable Lyapunov functions, some algebraic sufficient criteria guaranteeing finite‐time synchronization are deduced for drive‐response memristive neural networks in finite time. Furthermore, we give the estimation of the upper bounds of the settling time of finite‐time synchronization. Lastly, the effectiveness of the obtained sufficient criteria guaranteeing finite‐time synchronization is validated by simulation.  相似文献   

8.
In this paper, by starting from basic quaternion algebra properties and algorithms, a quaternion‐valued Cohen‐Grossberg neural network was derived, subsequently, several new sufficient conditions are derived to ensure existence and global asymptotic stability (GAS) and global exponential stability (GES) of the equilibrium point (EP) for quaternion‐valued Cohen‐Grossberg neural networks. The obtained criteria can be checked easily in practice and have a distinguished feature from previous studies. Finally, we have numerical evidences that the mathematical system and the conclusions presented are validated.  相似文献   

9.
ABSTRACT

This paper investigates the problem of master-slave synchronization of neural networks with time-varying delays via the event-triggered control (ETC). First, the proposed ETC can effectively reduce the total amount of data transmitted to the controller in the synchronization process and avoid communication channel congestion. Second, a master-slave synchronization of neural networks with time-varying delays is constructed, where delays within neural networks and the ETC are simultaneous existence. The controller is updated by the ETC. By the Lyapunov stability theory, some sufficient criteria are obtained to ensure master-slave synchronization of neural networks. Finally, a numerical example and a tunnel diode circuit example are used to verify the validity of results obtained.  相似文献   

10.
In this paper, we investigate finite-time uniform stability of functional differential equations with applications in network synchronization control. First, a Razumikhin-type theorem is derived to ensure finite-time uniform stability of functional differential equations. Based on the theoretical results, finite-time uniform synchronization is proposed for a class of delayed neural networks and delayed complex dynamical networks by designing nontrivial and simple control strategies and some novel criteria are established. Especially, a feasible region of the control parameters for each neuron is derived for the realization of finite-time uniform synchronization of the addressed neural networks, which provide a great convenience for the application of the theoretical results. Finally, two numerical examples with numerical simulations are provided to show the effectiveness and feasibility of the theoretical results.  相似文献   

11.
In this paper, we consider a class of delayed quaternion‐valued cellular neural networks (DQVCNNs) with impulsive effects. By using a novel continuation theorem of coincidence degree theory, the existence of anti‐periodic solutions for DQVCNNs is obtained with or without assuming that the activation functions are bounded. Furthermore, by constructing a suitable Lyapunov function, some sufficient conditions are derived to guarantee the global exponential stability of anti‐periodic solutions for DQVCNNs. Our results are new and complementary to the known results even when DQVCNNs degenerate into real‐valued or complex‐valued neural networks. Finally, an example is given to illustrate the effectiveness of the obtained results.  相似文献   

12.
In this article,we consider the global chaotic synchronization of general coupled neural networks,in which subsystems have both discrete and distributed delays.Stochastic perturbations between subsyste...  相似文献   

13.
In this paper, we study exponential synchronization of delayed reaction-diffusion fuzzy cellular neural networks with general boundary conditions. By using Sobolev inequality techniques and constructing suitable Lyapunov functional, some sufficient conditions are given to ensure the exponential synchronization of the drive-response delayed fuzzy cellular neural networks with general boundary conditions. Finally, an example is given to verify the theoretical analysis.  相似文献   

14.
本文研究了具分布时滞的神经网络的全局同步性.通过应用Lyapunov泛函和线性矩阵不等式,获得了关于模型全局同步性的几个判定准则,并通过对相关例子进行了数值的仿真,模拟结果与理论分析吻合.  相似文献   

15.
In this paper, impulsive control for master–slave synchronization schemes consisting of identical chaotic neural networks is studied. Impulsive control laws are derived based on linear static output feedback. A sufficient condition for global asymptotic synchronization of master–slave chaotic neural networks via output feedback impulsive control is established, in which synchronization is proven in terms of the synchronization errors between the full state vectors. An LMI-based approach for designing linear static output feedback impulsive control laws to globally asymptotically synchronize chaotic neural networks is discussed. With the help of LMI solvers, linear output feedback impulsive controllers can be easily obtained along with the bounds of the impulsive intervals for global asymptotic synchronization. The method is finally illustrated by numerical simulations.  相似文献   

16.
This paper considers the chaotic synchronization problem of neural networks with time-varying and distributed delays using impulsive control method. By utilizing the stability theory for impulsive functional differential equations, several impulsive control laws are derived to guarantee the exponential synchronization of neural networks with time-varying and distributed delays. It is shown that chaotic synchronization of the networks is heavily dependent on the designed impulsive controllers. Moreover, these conditions are expressed in terms of LMI and can be easily checked by MATLAB LMI toolbox. Finally, a numerical example and its simulation are given to show the effectiveness and advantage of the proposed control schemes.  相似文献   

17.
针对一类具有时滞的中立型驱动反应BAM神经网络,提出全局渐近同步性问题.不使用现有文献中传统的李雅普诺夫泛函、矩阵测度和线性矩阵不等式(LMI)等已被广泛应用于研究神经网络全局渐近同步性的方法,而是通过构造2个微分不等式U 1(t)和U 1(t),利用微分不等式方程和不等式技巧解出2个不等式,得到能够确保中立型驱动反应BAM神经网络全局渐近同步的两个新的充分条件.  相似文献   

18.
This paper investigates synchronization dynamics of delayed neural networks with all the parameters unknown. By combining the adaptive control and linear feedback with the updated law, some simple yet generic criteria for determining the robust synchronization based on the parameters identification of uncertain chaotic delayed neural networks are derived by using the invariance principle of functional differential equations. It is shown that the approaches developed here further extend the ideas and techniques presented in recent literature, and they are also simple to implement in practice. Furthermore, the theoretical results are applied to a typical chaotic delayed Hopfied neural networks, and numerical simulation also demonstrate the effectiveness and feasibility of the proposed technique.  相似文献   

19.
This paper is concerned with the adaptive synchronization problem for a class of stochastic delayed neural networks. Based on the LaSalle invariant principle of stochastic differential delay equations and the stochastic analysis theory as well as the adaptive feedback control technique, a linear matrix inequality approach is developed to derive some novel sufficient conditions achieving complete synchronization of unidirectionally coupled stochastic delayed neural networks. In particular, the synchronization criterion considered in this paper is the globally almost surely asymptotic stability of the error dynamical system, which has seldom been applied to investigate the synchronization problem. Moreover, the delays proposed in this paper are time-varying delays and distributed delays, which have rarely been used to study the synchronization problem for coupled stochastic delayed neural networks. Therefore, the results obtained in this paper are more general and useful than those given in the previous literature. Finally, two numerical examples and their simulations are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

20.
This paper deals with the problem of exponential synchronization of Markovian jumping chaotic neural networks with saturating actuators using a sampled-data controller. By constructing a proper Lyapunov–Krasovskii functional (LKF) with triple integral terms, and employing Jensen’s inequality, some new sufficient conditions for the exponential synchronization of considered chaotic neural networks are derived in terms of linear matrix inequalities (LMIs). The obtained LMIs can be easily solved by any of the available software. Finally, the numerical examples are provided to demonstrate the effectiveness of our theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号