首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and sensitive kinetic method was described for the determination of hyoscine butylbromide in pharmaceutical preparations. The method is based upon a kinetic investigation of the oxidation reaction of the drug with alkaline potassium permanganate at room temperature for a fixed time of 15 min. The absorbance of the colored manganate ion was measured at 610 nm. The absorbance–concentration plot was rectilinear over the range of 1.0–10 μg mL?1 (r = 0.9999) and detection limit of 0.092 μg mL?1. The concentration of hyoscine butylbromide was calculated using the corresponding calibration equation for the fixed-time method. The determination of hyoscine butylbromide by the fixed-concentration and rate constant methods is also feasible with the calibration equations obtained but the fixed-time method has been found to be more applicable. The different experimental parameters affecting the development and stability of the colors were carefully studied and optimized. The proposed method was applied to the determination of hyoscine butylbromide in pharmaceutical formulations. The results obtained were in good agreement with those obtained using the official British Pharmacopeial method (2004).  相似文献   

2.
《Vibrational Spectroscopy》2007,43(2):440-446
Procedures for data acquisition and data processing are evaluated for the optimal computation of absorbance values based on Fourier transform near-infrared transmission spectra. Samples consisting of physiological levels (1–20 mM) of glucose in an aqueous matrix of variable levels of bovine serum albumin and triacetin are studied in the combination spectral region (5000–4000 cm−1). The weak glucose signals in this region define a challenging analysis that is extremely sensitive to the effects of instrumental drift. The impact of different procedures for obtaining absorbance estimates is evaluated in the context of multivariate calibration models based on partial least-squares (PLS) regression. Replicate calibration and prediction data acquired over 6 months are used to study the robustness of PLS models with respect to time. The recommended protocol for the absorbance calculations is based on the collection of a large group of individual background spectra during the instrumental warm-up period. Seven procedures are tested for obtaining optimal backgrounds for use with either the calibration or prediction data sets. When the developed methodology is employed, standard errors of prediction are maintained in the range of 1.0 mM for spectra acquired up to 6 months after the collection of the calibration data. This level of performance compares favorably to daily internal cross-validation errors of 0.5–0.9 mM.  相似文献   

3.
Four methods have been developed for the simultaneous determination of phenylephrine hydrochloride and chlorpheniramine maleate without previous separation. In the first method both drugs are determined using first derivative UV spectrophotometry, with zero-crossing measurement. The second method depends on first derivative of the ratios spectra. The third method describes the use of multivariate spectrophotometric calibration for the simultaneous determination of the analyzed binary mixture where the resolution is accomplished by using partial least squares (PLS) regression analysis. In the fourth method (HPLC), a reversed-phase column and a mobile phase of methanol:water:acetonitrile (80:12:8 v/v/v/) at 0.9 ml/min flow rate have been used to separate both drugs with a UV detection at 270 nm. All the proposed methods are extensively validated. They have the advantage to be economic and time saving. All the described methods can be readily utilized for analysis of pharmaceutical formulations. The results obtained using the proposed methods are statistically analyzed and compared with some reported methods.  相似文献   

4.
This study determined iodine value (IV) and free fatty acids (FFA) content of four different animal fat wastes and their blends using Fourier transform near-infrared spectroscopy (FT-NIR). Chemometric analysis by partial least squares (PLS) regression was used to correlate spectral data with IV and FFA reference values of the samples. The effects of four spectra pre-processing (first derivative (FD), second derivative (SD), multiplicative scatter correction (MSC) and vector normalization (VN)) methods were investigated to predict the reproducibility and robustness of the PLS-NIR model developed. A set of 70% of animal fat wastes and their blends were used for developing PLS calibration models for measuring IV and FFA content using the remaining 30% samples as an independent test set validation. The coefficient of determination (R2), the root mean square error estimation (RMSEE), and the residual prediction deviation (RPD) were used as indicators for the predictability of the PLS models. PLS-NIR models developed using first derivative and second derivative spectral preprocessing methods were the best for both IV and FFA content analysis (For IV, FD; R2 = 0.9870, RMSEE = 1.40 gI2/100 g, RPD = 8.76, SD; R2 = 0.9892, RMSEE = 1.28 gI2/100 g, RPD = 9.64 while For FFA, FD; R2 = 0.9991, RMSEE = 0.195%, RPD = 34.00, SD; R2 = 0.9993, RMSEE = 0.182%, RPD = 36.8). Overall, the results of this study demonstrate the suitability of FT-NIR spectroscopy for the quality control analysis of feedstocks for biodiesel production.  相似文献   

5.
The objective of this research was to develop a kinetic spectrophotometric method for determination of moxifloxacine (MOXF) in pure form and pharmaceutical formulations. The method was based on the formation of a colored N-vinyl chlorobenzoquinone derivative of MOXF by its reaction with 2,3,5,6-tetrachloro-1,4-benzoquinone in presence of acetaldehyde.The formation of the colored product was monitored spectrophotometrically by measuring the absorbance at 652 nm. Factors affecting the reaction were studied and optimized. The stoichiometry of the reaction was determined, and the reaction pathway was postulated. The activation energy of the reaction was calculated and found to be 6.65 kJ mol?1. Under the optimized conditions, the initial rate and fixed time (at 5 min) methods were utilized for constructing the calibration graphs. The graphs were linear in concentration ranges 5–100 and 15–150 μg ml?1 with limit of detection of 2.0 and 5.0 μg ml?1 for the initial rate and fixed time methods, respectively. The analytical performance for both methods was fully validated, and the results were satisfactory. No interference was observed from the excipients that are commonly present in the pharmaceutical formulations. The proposed method was successfully applied to the determination of MOXF in its pharmaceutical formulations. The label claim percentages were 101.25 ± 0.73% and 100.92 ± 0.65% for the initial rate and fixed time method, respectively. Statistical comparison of the results with those obtained by a reference spectrophotometric method showed excellent agreement between the accuracy and precision of the two methods. The proposed method has great value in its application to the analysis of MOXF in quality control laboratories.  相似文献   

6.
This work investigates the potential of high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of bromine in polymers, which could be interesting in view of the current regulations restricting the use of organobrominated compounds. The method developed is based on the addition of Ca (300 μg) and Pd (30 μg) to favor the formation of CaBr, which is monitored at the main molecular “lines” (rotational spectra) found in the vicinity of 625.315 nm.It was found that accurate results could be obtained for all the samples investigated (polyethylene, polypropylene and acrylonitrile butadiene styrene certified reference materials) using any of the lines studied and constructing the calibration curve with aqueous standards. Furthermore, the combined use of the main four CaBr lines available in the spectral area simultaneously monitored permits to easily expand the linear range up to 2000 ng, provides a limit of detection of 1.8 ng (1.8 μg g 1 for a mass of 1 mg) and further improves precision to values between 3–7% RSD. Overall, the method proposed seems suited for the fast and simple control of these types of samples (approximately 10 min for sample are required), circumventing the traditional problems associated with sample digestion (e.g., losses of volatile compounds), and providing sufficient sensitivity to easily comply with regulations.  相似文献   

7.
Nowadays, there is a great demand for precise, sensitive and adequate indicators for evaluating the quality of soils. In spite of recent developments in this field, a fast, non-destructive method for soil quality assessment has not yet been evaluated. The objective of this study was to investigate the possibility of using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy to estimate soil quality in the form of soil quality index (SQI). A set of soil samples (n = 89) was scanned and regression was carried out using a combination of DRIFT spectroscopy and partial least-squares (PLS). The reliability of the DRIFT-PLS calibration model (n = 53) was acceptable (coefficient of determination, R2 = 0.49; residual prediction deviation, RPD = 1.4) for the estimating of the SQI values. The validation of the calibration model using a validation set (n = 36) of unknown samples also resulted in good acceptability with R2 = 0.68 and RPD = 1.85. The DRIFT-PLS based model could provide a rapid, cheap estimate of SQI values and subsequently of soil quality by taking into account the integrated effects of the mineralogical and organic components of the soil. This approach could be useful to monitor soil quality under conditions where the analysis of a large number of soil samples is required.  相似文献   

8.
A simple, rapid, sensitive and accurate spectrophotometric method for the determination of captopril in pure form and pharmaceutical formulations is developed. The procedure is based on the reaction of copper(II) with captopril in the presence of neocuproine (NC) (2,9-dimethyl-1,10-phenanthroline) reagent in acetate buffer at pH 5.0. Copper(II) is reduced easily by captopril to Cu(I)–neocuproine complex, which shows an absorption maximum at 448 nm. Beer’s law was obeyed in the concentration range 0.3–3.0 μg mL?1 with a minimum detection limit (LOD) of 0.039 μg mL?1 and a quantification limit (LOQ) of 0.129 μg mL?1. For more accurate results, Ringbom optimum concentration ranges was 0.5–2.7 μg mL?1. The apparent molar absorbtivity and Sandell sensitivity were calculated. The validity of the proposed method was tested by analyzing the pure and pharmaceutical formulations and compared well with those obtained by the official method and demonstrated good accuracy and precision.  相似文献   

9.
A spectrophotometric method and two titrimetric methods for the determination of nordiazepam via its iodobismuthate complex are described. These methods depend on the reaction of nordiazepam with potassium bismuth iodide which give an orange precipitate. Determination of nordiazepam in the precipitated complex is done iodometrically using standard potassium iodate solution or complexometrically using standard EDTA solution and xylenol orange indicator. Alternatively, the complex is dissolved in ethanol and its absorbance is measured at 323 nm. The three methods were applied for the determination of reference samples of nordiazepam in the concentration range of 1–30 mg ml?1 (for the iodometric method) and of 5–30 mg ml?1(for the complexometric method) and of 0.04–3.2 mg ml?1 (for the spectrophotometric method). The proposed methods were applied for the determination of nordiazepam in madar tablets and the validity of the proposed methods was assessed by applying the standard addition technique.  相似文献   

10.
Raman and infrared (IR) spectroscopy are complementary spectroscopic techniques. However, measurement of Raman and IR spectra are commonly carried out on separate instruments. A dispersive system that enables both Raman spectroscopy and NIR spectroscopy was designed, built, and tested. The prototype system measures spectral ranges of 2600–300 cm−1 and 752–987 nm for Raman and NIR channels, respectively. A wavelength accuracy better than 0.6 nm and spectral resolution better than 1 nm (14.4 cm−1 for Raman channel) could be achieved with our configuration. The linearity of spectral response was better than 99.8%. The intensity stability of the instrument was found to be 0.7% and 0.4% for Raman and NIR channels, respectively. The performance of the instrument was evaluated using binary aqueous solutions of ethanol and ovalbumin. It was found that ethanol concentrations (2–10%) could be predicted with a root mean squared error of prediction (RMSEP) of 0.45% using Raman peak height at 882.2 cm−1. Quantification of ovalbumin concentration (8–16 g/L) in aqueous solutions and in denatured states yielded RMSEP values of 1.05 g/L and 0.74 g/L, respectively. Using concentration as external perturbation in two-dimensional correlation spectroscopy (2DCOS), heterospectral correlation analysis revealed the relationship between NIR and Raman spectra.  相似文献   

11.
Two simple, rapid, sensitive, low-cost, and accurate methods (A and B) for the microdetermination of amantadine HCl (AMD) in pure form and in pharmaceutical formulations are developed. Method A is based on the formation of tris (o-phenanthroline)-iron(II) complex (ferroin) upon reaction of amantadine HCl with an iron (III)-o-phenanthroline mixture in sodium acetate-acetic acid buffer media. The ferroin complex is spectrophotometrically measured at λmax 509 nm against reagent blank. Method B is based on the reduction of Fe (III) by the drug which forms colored complex (λmax 521 nm) with 2,2′-bipyridyl. Optimizations of the experimental conditions are described. Beer’s law is obeyed in the concentration ranges 0.4–10 and 0.6–22 μg mL?1 using 1,10-phenanthroline and 2,2′-bipyridyl, respectively. The developed methods have been successfully applied for the determination of AMD in bulk drugs and in pharmaceutical formulations. The common excipients and additives did not interfere in their determinations.  相似文献   

12.
The aim of this study was to assess the feasibility of near infrared spectroscopy (NIRS) for analysis of acyclovir in plasma. This methodology was based on the direct measurement of the transmission spectra of liquid samples and a multivariate calibration model (partial least squares, PLS) to determine the acyclovir concentration in plasma sample. The PLS calibration set was built on using the spiked samples by mixing different amounts of acyclovir. Concentration of acyclovir in the plasma samples was calculated employing a 6-factors PLS calibration using the spectral information in the range of 6102-5450 cm− 1. The root mean square errors of prediction (RMSEP) found was 1.21 for acyclovir. The developed PLS-NIRS procedure allows the determination of 120 samples/h does not require any sample pretreatment and avoids waste generation.  相似文献   

13.
A simple and sensitive kinetic spectrophotometric method for the quantitative analysis of pravastatin sodium (PVS) in pure and pharmaceutical formulations has been described. The method is based on the formation of colored product between PVS and 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) in acetone medium at 55 ± 2 °C. The reaction is followed spectrophotometrically by measuring the increase in absorbance at 462 nm as a function of time. The initial rate and fixed time methods were adopted for constructing the calibration curves. The linearity ranges were found to be 15.0–50.0 and 10.0–70.0 μg mL?1 for initial rate and fixed time methods, respectively. The limits of detection for initial rate and fixed time methods are 0.029 and 0.086 μg mL?1, respectively. Both methods have been applied successfully for the estimation of PVS in commercial dosage forms with no interference from the excipients. The results are compared with the HPLC pharmacopoeial method.  相似文献   

14.
A compact measurement system based on a novel combination of cantilever enhanced photoacoustic spectroscopy (CEPAS) and optical parametric oscillator (OPO) was applied to the gas phase measurement of benzene, toluene, and o-, m- and p-xylene (BTX) traces. The OPO had a band width (FWHM) of 1.3 nm, was tuned from 3237 to 3296 nm in steps of 0.1 nm and so spectra of BTX at different concentrations were recorded. The power emitted by the OPO increased from 88 mW at 3237 nm to 103 mW at 3296 nm. The univariate detection limits (3σ, 0.951 s) for benzene, toluene, p-, m- and o-xylene at 3288 nm were 12.0, 9.8, 13.2, 10.1 and 16.0 ppb, respectively. Multivariate data analysis using science-based calibration was used to resolve the interference of the analytes. The multivariate detection limits (3σ, 3237–3296 nm, 591 spectral points each 0.951 s) for benzene, toluene, p-, m- and o-xylene in the multi-compound sample, where all other analytes and water interfere were 4.3, 7.4, 11.0, 12.5 and 6.2 ppb, respectively. Without interferents, the multivariate detection limits varied between 0.5 and 0.6 ppb. The sum of the cross-selectivities (3237–3296 nm, 591 spectral points, each 0.951 s) per analyte were below 0.05 ppb/ppb, with an average of 0.038 ppb/ppb. The cross-selectivity of water to the analytes was on average 1.22 × 10−4 ppb/ppb. The OPO is small in size (L × W × H 125 × 70 × 45 mm), commercially available, and easy to operate and integrate to setups. The combination with sensitive CEPAS enables compact measurement systems for industrial as well as environmental trace gas monitoring.  相似文献   

15.
《Microchemical Journal》2011,97(2):348-351
A sensitive and selective preconcentration method using solid-phase extraction (SPE) disk, namely multiwalled carbon nanotubes (MWCNTs) disk, is proposed for the determination of atrazine and simazine in water samples. Atrazine and simazine were extracted on MWCNTs disk and then determined by gas chromatography–mass spectrometry (GC/MS). Several parameters on the enrichment factor of the analytes were investigated. The experimental results showed that it was possible to obtain quantitative analysis when the solution pH was 5 using 200 mL of validation solution containing 0.1 μg of triazines and 5 mL of acetone as an eluent. The maximum enrichment factors for atrazine and simazine were 3900 ± 250 and 4000 ± 110, respectively when 200 mL of sample solution volume was used. Relative standard deviations for seven determinations were 6.9% (atrazine) and 3.0% (simazine) under optimum conditions. The linear range of calibration curves were 0.1 to 1 ng mL 1 for each analyte with good correlation coefficients. The detection limits (3S/N) were 2.5 and 5.0 pg mL 1 for atrazine and simazine, respectively. The proposed method was successfully applied to the determination of atrazine and simazine in environmental water samples with high precision and accuracy.  相似文献   

16.
A simple and sensitive capillary electrophoresis method with fluorescence detection was developed for the determination of sulphanilamide, sulphamerazine, sulphacetamide and sulphanilic acid, sulphathiazole, Sulphisomidine, sulphadoxine and sulphadiazine in lake water. The sulphonamides were extracted from lake water, derivatized with fluorescamine and determination of sulphonamide was achieved using 20 mM borate buffer of pH 9.5 at an applied voltage of 25 kV. Detection was performed using UG-11 excitation filter of 405 nm and 495 nm emission filters. A fast, simple and sensitive method with limit of detection in the range 0.89–1.43 n mol L−1 for all the eight sulphonamides with good recoveries of 80–110% is seen. Inter-day and intra-day validation of the separation method shows fairly good results. The detection and quantification limits for this newly developed method are too low to determine drug residues in lake water.  相似文献   

17.
Spectrophotometric method has been developed for the direct quantitative determination of captopril in pharmaceuticalpreparation and biological fluids(human plasma and urine)samples.The method was accomplished based on parallel factoranalysis(PARAFAC)and partial least squares(PLS).The study was carried out in the pH range from 2.0 to 12.8 and with aconcentration from 0.70 to 61.50 μg mL~(-1)of captopril.Multivariate calibration models such as PLS at various pH and PARAFACwere elaborated from ultraviolet spectra deconvolution and captopril determination.The best models for this system were obtainedwith PARAFAC and PLS at pH 2.0.The applications of the method for determination of real samples were evaluated by analysis ofcaptopril in pharmaceutical preparations and biological fluids with satisfactory results.The accuracy of the method,evaluatedthrough the RMSEP,was 0.5801 for captopril with best calibration curve by PARAFAC and 0.6168 for captopril with PLS at pH 2.0model.  相似文献   

18.
《Vibrational Spectroscopy》2010,52(2):205-212
Research has been carried out to determine the potential of partial least squares (PLS) modeling of mid-infrared (IR) spectra of crude oils combined with the corresponding 1H and 13C nuclear magnetic resonance (NMR) data, to predict the long residue (LR) properties of these substances. The study elaborates further on a recently developed and patented method to predict this type of information from only IR spectra. In the present study, PLS modeling was carried out for 7 different LR properties, i.e., yield long-on-crude (YLC), density (DLR), viscosity (VLR), sulfur content (S), pour point (PP), asphaltenes (Asph) and carbon residue (CR). Research was based on the spectra of 48 crude oil samples of which 28 were used to build the PLS models and the remaining 20 for validation. For each property, PLS modeling was carried out on single type IR, 13C NMR and 1H NMR spectra and on 3 sets of merged spectra, i.e., IR + 1H NMR, IR + 13C NMR and IR + 1H NMR + 13C NMR. The merged spectra were created by considering the NMR data as a scaled extension of the IR spectral region. In addition, PLS modeling of coupled spectra was performed after a Principal Component Analysis (PCA) of the IR, 13C NMR and 1H NMR calibration sets. For these models, the 10 most relevant PCA scores of each set were concatenated and scaled prior to PLS modeling. The validation results of the individual IR models, expressed as root-mean-square-error-of-prediction (RMSEP) values, turned out to be slightly better than those obtained for the models using single input 13C NMR or 1H NMR data. For the models based on IR spectra combined with NMR data, a significant improvement of the RMSEP values was not observed neither for the models based on merged spectra nor for those based on the PCA scores. It implies, that the commonly accepted complementary character of NMR and IR is, at least for the crude oil and bitumen samples under study, not reflected in the results of PLS modeling. Regarding these results, the absence of sample preparation and the straightforward way of data acquisition, IR spectroscopy is preferred over NMR for the prediction of LR properties of crude oils at site.  相似文献   

19.
A novel poly(p-xylenolsulfonephthalein) modified glassy carbon electrode was prepared for the simultaneous determination of ascorbic acid (AA), epinephrine (EP) and uric acid (UA). Cyclic voltammetric, chronoamperometric, and differential pulse voltammetric methods were used to investigate the modified electrode for the electrocatalytic oxidation of EP, AA, and UA in aqueous solutions. The separation of the oxidation peak potentials for AA–EP and EP–UA was about 200 and 130 mV, respectively. The calibration curves obtained for AA, EP, and UA were in the ranges of 10–1343, 2–390, and 0.1–560 μmol L−1, respectively. The detection limits (S/N = 3) were 4, 0.1, and 0.08 μmol L−1 for AA, EP and UA, respectively. The diffusion coefficient and the catalytic rate constant for the oxidation of EP at the modified electrode were calculated as 1.40(±0.10) × 10−4 cm2 s−1 and 1.06 × 103 mol−1 L s−1, respectively. The present method was applied to the determination of EP in pharmaceutical and urine samples, AA in commercially available vitamin C tablet, and EP plus UA in urine samples.  相似文献   

20.
A new high-sensitivity detection of protein assay at the nanogram level is developed based on the amplified resonance light scattering signals (RLS) of Tichromine (TCM). In Walpole (NaAc–HCl) buffer (pH 4.05), TCM reacts with proteins to form large particles, which results in remarkable enhanced RLS signals characterized by three peaks at 293 nm, 399 nm and 553 nm. Mechanistic studies showed that the enhanced RLS stems from a large complex of TCM–BSA formed for the electrostatic effect between TCM and BSA. With the enhanced RLS signals at the three wavelengths, the enhanced RLS intensity is proportional to the concentration of proteins in an appropriate range. The lowest limit of determination was 7.4 ng mL?1. The proposed method was successfully applied to determine total protein in human serum samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号