首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using quantitative thermal scanning of building surface structures, it is possible to access the temperature field. For further calculation of the heat flux exchanged by these structures with the environment, one must quantify as finely as possible the temperature field on the bodies surfaces. For this purpose we have to take into account that real bodies are not black, which implies that a part of the ambient radiation received by the infrared camera detectors is reflected radiation. In this paper, we present a method to quantify the reflected flux by using an infrared mirror, which allows large surface temperature measurements by infrared thermography under near-ambient conditions with improved accuracy. In order to validate the method, an experimental study was carried out on a multi-layer wall, which simulated an insulation default. A good agreement was noticed between the thermocouple temperatures and the infrared corrected ones. Then, the method is applied to outdoor measurements.  相似文献   

2.
Surface layer plumes, thermals, downdrafts and roll vortices are the most prominent coherent structures in an unstably stratified boundary layer. They contribute most of the temperature and vertical velocity variance, and their time scales increase with height. The effects of these multi-scale structures (surface layer plumes scale with surface layer depth, thermals scale with boundary layer height and the resulting roll vortices scale with convective time scale) on the surface temperature and ground heat flux were studied using turbulence measurements throughout the atmospheric boundary layer and the surface temperature measurements from an infrared camera. Plumes and thermals imprint on the surface temperature as warm structures and downdrafts imprint as cold structures. The air temperature trace shows a ramp-like pattern, with small ramps overlaid on a large ramp very close to the surface; on the other hand, surface temperature gradually increases and decreases. Turbulent heat flux and ground heat flux show similar patterns, with the former lagging the latter. The maximum values of turbulent heat flux and ground heat flux are 4 and 1.2 times the respective mean values during the ejection event. Surface temperature fluctuations follow a similar power-law exponent relationship with stability as suggested by surface layer similarity theory.  相似文献   

3.
High-sensitivity measurements for mapping coronal magnetic field have become possible since the recent development of infrared detection techniques. One urgent task that arises from the routine infrared observations is to interpret what the Stokes signals could indicate for coronal magnetic fields. It is the first time for us to successfully reveal the coronal field structure above a simple and stable sunspot on the photosphere using profiles of full Stokes parameters. In this paper, the author further points out the deficiency in any conclusions/judgements just based on incomplete polarization data. A magnetic flux reversal feature, observed from circular polarization data, may correspond to one or more coronal tubes with their front or farside arching apex there, more complicated than people imagined before. To exactly locate the infrared radiation sources, we need both circular and linear polarization data for an integrated analysis of them.  相似文献   

4.
Continuous furnaces are commonly used for steel billet reheating before a rolling operation. It is necessary to perform a number of measurements to set-up and operate the optimization system of the furnaces correctly. A charge temperature measurement using infrared detectors can be one of the usable measurement techniques. This non-contact measurement method is based on the detection of infrared radiation emitted from a measured surface. The radiation intensity depends on the surface temperature and emissivity, which is one of the most important parameters for infrared measurements. Advantages of the non-contact temperature measurement, as well as some problems regarding the surface emissivity, are presented. The direct steel billet temperature measurement procedure using infra-red detectors, emissivity determination procedures, and example results are introduced. It is shown that steel emissivity can vary from approx. 0.17 to 0.8, depending on the surface state, scale formation, and wavelength interval. These problems are critical for the charge temperature measurement using the infra-red detectors, and are discussed in this paper.  相似文献   

5.
零视距地物长波红外特征场景仿真研究   总被引:6,自引:1,他引:5  
为仿真地物长波红外场景图像,根据地表温度随时间变化的规律,并结合气象状况、背景材质、热特性参量、热状态等参数,在对太阳辐射、大气长波辐射、大气温度和地表热传导等影响地表温度变化的因素进行分析的基础上,建立了基于热平衡理论和热传导过程的方程。解算出多种常见地表一日之中的温度变化情况,并将其应用于由相同景物可见光纹理图像反演出的相应红外纹理图像中。在考虑景物表面自身发射、反射的辐射计算模型的前提下,生成了具有相似红外纹理细节的地表红外场景。结果表明,该方法可生成接近真实感的红外场景,有效地模拟仿真地物的长波红外特征。  相似文献   

6.
The existing inverse methods used to determine the heat flux density require that the forward problem and the problem domain (geometry) be known. In this paper, in order to determine the spatiotemporal heat flux density without knowing the real problem domain, we propose an approach based on temporal tracking of the thermal front. The proposed approach is particularly relevant when a three-dimensional formulation is adopted for nondestructive testing using infrared thermography. For such a formulation, heat flux density resulting from the external thermal stimulus is needed and must be determined to accurately characterize the defects and reconstruct the internal geometry of the inspected objects. The proposed approach uses only two inputs: the time-dependent temperature of the frontal surface recorded by an infrared camera and the 3D point cloud of the frontal surface collected by a 3D scanner. The method is evaluated numerically on an object of complex shape. We consider the case of pulsed thermal stimulus as well as the cases of unit step and modulated thermal stimuli. An experimental validation is performed on a cylindrical object submitted to a pulsed thermal stimulus and a modulated thermal stimulus. The results show the accuracy of the method which can easily be implemented as the initial step of the three-dimensional quantitative nondestructive testing of objects using infrared thermography.  相似文献   

7.
For the long-pulse high-confinement discharges in tokamaks, the equilibrium of plasma requires a contact with the first wall materials. The heat flux resulting from this interaction is of the order of 10 MW/m2 for steady state conditions and up to 20 MW/m2 for transient phases. The monitoring on surface temperatures of the plasma facing components (PFCs) is a major concern to ensure safe operation and to optimize performances of experimental operations on large fusion facilities. Furthermore, this measurement is also required to study the physics associated to the plasma material interactions and the heat flux deposition process. In tokamaks, infrared (IR) thermography systems are routinely used to monitor the surface temperature of the PFCs. This measurement requires an accurate knowledge of the surface emissivity. However, and particularly for metallic materials such as tungsten, this emissivity value can vary over a wide range with both the surface condition and the temperature itself, which makes instantaneous measurement challenging. In this context, the multi-spectral infrared method appears as a very promising alternative solution. Indeed, the system has the advantage to carry out a non-intrusive measurement on thermal radiation while evaluating surface temperature without requiring a mandatory surface emissivity measurement.In this paper, a conceptual design for the multi-spectral infrared thermography is proposed. The numerical study of the multi-channel system based on the Levenberg-Marquardt (LM) nonlinear curve fitting is applied. The numerical results presented in this paper demonstrate the design allows for measurements over a large temperature range with a relative error of less than 10%. Furthermore, laboratory experiments have been performed from 200 °C to 740 °C to confirm the feasibility for temperature measurements on stainless steel and tungsten. In these experiments, the unfolding results from the multi-channel detection provide good performance on temperature measurement, which supports our numerical evaluation and demonstrates the potential feasibility for metallic surface high temperature measurement with this method.  相似文献   

8.
A thermosensitive interferometer based on a plane-parallel glass plate is used for visualization of a high-power terahertz radiation. The plane wavefront of visible radiation emitted by a semiconductor laser is reflected from the two surfaces of the plate and forms on a screen an interference pattern recorded by a digital video camera. Terahertz radiation being measured is incident on the outer surface of the plate and heats a thin surface layer, which causes a shift of interference fringes. For K8 glass, a shift by one fringe corresponds to an absorbed energy of 5.1 J/cm2. The problem of determining the sign of the phase shift was solved by comparing the interference patterns with the images obtained with an infrared imager sensitive to near IR radiation. The processing of interference patterns makes it possible to determine the power density distribution over the beam cross section of the Novosibirsk free electron laser. In these measurements, the absolute value of the beam power determined by integrating over the cross section was 65 ± 7 W for a 130-μm wavelength. Visualization of the complex image with a spatial resolution no worse than 1 mm and a frame repetition rate of 25 Hz is demonstrated.  相似文献   

9.
A modeling method of infrared imaging characteristics of a space-based target was presented. Background radiation environment of a space-based target was analyzed and the background radiation mainly consists of direct radiation of the sun, thermal radiation and reflected radiation of the earth. The target surface was divided into regions based on geometrical shape and surface material characteristics and a surface equation of each region was built based on its body coordinate system. Each region was divided into meshes supposing that each mesh is a micro-plane. A bidirectional reflection distribution function (BRDF) model considering the characteristics of surface Gauss statistics and self-shadow was introduced to describe reflected infrared of each mesh of the target surface. The emitted infrared radiation of each mesh of the target surface was described according to its thermal equilibrium temperature. Then a mathematical model on infrared radiation imaging characteristics of the space-based target was built in terms of the given infrared detector. The relative positions of the space-based target, the background radiation sources and the detector are determined by orbital parameters based on coordinate conversion. Visual surfaces of the target to observation system were determined by vector coordinate method. Simulation of optical imaging characteristics of the target in orbit was achieved according to its given geometrical dimensions and physical parameters. The results show the method is feasible and robust for infrared characteristics of the space-based target when single reflection is considered and its surface is regular and can be described in a surface equation. It can provide a facility to real-time analysis of infrared imaging characteristics of the space-based targets.  相似文献   

10.
The analysis of the infrared radiation characteristics of high-temperature free-stream flow including particles is very significant for the field of target detection, combustion diagnosis and temperature measurement of flame. In this paper, the infrared radiation characteristics of high-temperature free-stream flow are calculated and analyzed using the backward Monte Carlo method, considering the effect of the directional radiation heat flux due to the particle scattering and the different boundary conditions. The calculation results of emitting, absorbing and anisotropically scattering media are compared with the forward Monte Carlo and finite-volume methods results, which shows the superiority on computational efficiency with the backward Monte Carlo method.  相似文献   

11.
星载多波段红外光学系统的杂散辐射分析   总被引:2,自引:0,他引:2  
杜胜华  夏新林  孙创 《光子学报》2008,37(4):763-767
引入反向蒙特卡罗法与双向蒙特卡罗法对红外光学系统的杂散辐射进行分析,基于光谱辐射传递因子导出了焦平面辐射能流计算式.以某星载多波段红外光学系统为例,在检验计算可靠性的基础上,模拟了各波段辐射能从地球背景和光机内壁面到焦平面的传播过程,分析了壁面吸收率与温度的影响.结果表明,采用双向蒙特卡罗法可有效地模拟辐射能从地球向星载光学系统焦平面的传播过程,采用反向蒙特卡罗法可容易地分析光机内部热辐射的影响;光机内壁面吸收率对视场外杂散辐射的传播有很大影响,温度高于250 K的光机内壁面热辐射成为主要的杂散光源.  相似文献   

12.
In this study, we measured an infrared radiation which is transferred by a silver halide optical fiber from a heat source using a radiometer system for low-temperature measurements. To increase the amount of infrared radiation through the silver halide optical fiber and to the pyroelectric sensor, infrared optical devices used were an infrared focusing lens and a collimator. The relationship between the temperatures of a heat source and the measured radiometer signals were determined. The measurable temperature range of a fiber-optic temperature sensor using a pyroelectric sensor was from 298 to 333 K. It is expected that a noncontact low-temperature sensor using an infrared optical fiber can be developed for medical and industrial usages based on the results of this study.  相似文献   

13.
Real-time infrared radiation simulation technology can provide effective support for rapid design and evaluation of a system which integrates infrared imaging technology. Considering the aerodynamic heating effect, this paper presents a real-time infrared radiation characteristic simulation method of aircraft skin based on the panel element method, which can help to assess the infrared radiation impacts of different environment factors and materials. A 3-D model of an aircraft was established and its surface was divided into different parts and panel element meshes to attach material properties. For each mesh, its heat exchange equation is solved so as to obtain the whole skin’s temperature and infrared radiation distribution. The simulation results reveal the influence of different factors on the skin surface radiation, including environmental radiation, aerodynamic heating and material properties. And the credibility and efficiency of the proposed aerodynamic heating simulation method were confirmed by comparing to the CFD simulation results.  相似文献   

14.
张强  黄菁  张良  张立阳 《物理学报》2013,62(13):139202-139202
本文将观测试验资料与陆面过程模式模拟资料相结合, 对目前4个流行的陆面过程模式的模拟资料进行了验证分析, 发现通用陆面模式(CLM)模式的模拟资料在黄土高原地区比较可靠. 在此基础上,利用近几十年CLM模式模拟资料和气象站观测资料, 分析了黄土高原地区的区域气候和地表能量交换特征的变化规律, 研究了该地区地表能量交换对降水和温度变化的响应特征, 讨论了该地区气候变化对地表能量交换特征的影响机理. 研究发现,近几十年来黄土高原区域气候表现为明显的暖干化趋势, 从而引起太阳总辐射、地表反射辐射和地表长波向上辐射的增加 及地表长波向下辐射的减小,并由此造成地表净辐射通量减少. 与之相对应,不仅地表潜热通量呈减小趋势,而且地表感热通量和土壤热通量也呈减小趋势, 但地表热量分量的分配比例基本不变.并且发现,地表感热通量的年变化主要由太阳辐射控制, 而潜热通量的年变化则受太阳辐射和降水共同影响;地表热量分量的年际变化均对降水变化响应很敏感, 而对温度变化响应不太敏感,气候干旱化对地表能量平衡的影响比气温变暖的影响更突出. 关键词: 黄土高原 区域气候暖干化 陆面过程模拟 陆面能量交换  相似文献   

15.
高浓度水雾条件下的表面高温温场反演测量在航空航天、冶金铸造等工业领域有着重要的应用。由于水雾的弥散作用,高温表面的辐射透过水雾后,会出现强烈的衰减和散射,导致传统辐射测温方法出现很大误差。现有水雾弥散条件下的温场反演测量主要包括基于试验数据反推及实时测量水雾参数进行修正的测量方法,并基于辐射传输理论对测量结果进行误差分析和评估,测量方式多为单通道或双通道点辐射测温。基于水雾场红外光谱辐射特性的计算,提出了一种水雾强弥散条件下表面高温温场多光谱成像反演方法;根据辐射传输理论,考虑强弥散条件下的邻近效应,建立了相应的反演模型。在水雾场相关参数未知的情况下,通过三个透过水雾场后的高温目标长波红外光谱辐射图像,反演得到表面高温温场的真温分布。反演第一步是辐射温度场反演,即通过长波红外辐射图像,根据定标曲线和高温目标的光谱发射率先验数据,得到高温目标透过弥散水雾场经过发射率校正的辐射温度场;反演的第二步是根据三通道非线性反演模型,得到目标的真温温场分布。设计了一个长波红外三光谱通道反演测量装置,中心波长分别是8.8, 10.7和12.0 μm,对高温目标进行三个长波红外光谱通道的同时探测成像。设计了一套验证测试装置,利用标准高温黑体源和水雾弥散设备,进行了高温目标水雾弥散条件下的辐射图像采集和目标温度的反演试验。试验结果表明8~14 μm长波红外波段比短波波段对水雾弥散具有更强的抗干扰能力,在1 100和1 200 ℃典型温度点反演的平均误差在7%左右,大大减小了未经校正的辐射传输失真,适用于黑体和灰体高温目标,且无需水雾场的浓度和粒径分布等先验信息,基于多光谱成像信息的水雾弥散条件下温场反演方法具有一定的普适性和创新性。  相似文献   

16.
In a series of recent experiments, research groups have made absolute frequency measurements with laser beams in the infrared region of the spectrum (λ ? 10 μm) using a metal point contact diode for generation, frequency mixing and detection. It has been postulated that the mechanism for the nonlinear current-voltage characteristic of the diode is tunnelling of electrons through an intermediate oxide film from the whisker into the metal base, i.e., the configuration is considered to be a metal-oxide-metal (MOM) tunnelling junction. Several features of the diode's operation create considerable doubt concerning the applicability of the MOM tunnelling mechanism. Analysis of the available experimental data led us to postulate an alternate solid state mechanism, namely a thermally enhanced field emission process. Such emission would be a consequence of the immersion of the whisker tip in the laser radiation resulting in (1) conduction heating which induces thermionic emission and (2) generation of an electric field at the tip necessary for electron tunnelling by field emission. In this paper we calculate rigorously the power absorbed in the metal whisker from the incident radiation. From the power absorbed, the heat conduction equation is solved for model geometries to obtain the laser induced temperature distribution at the whisker surface. Estimates of the electric field are obtained and combined with temperature calculations to obtain the nonlinear IV characteristics of the thermally enhanced field emission model. Finally some simple experiments are proposed to test the thermal field emission hypothesis as a possible mechanism to explain the nonlinear characteristics of the metal whisker point contact diode.  相似文献   

17.
It is commonly accepted that the Schwarzschild-Schuster two-flux approximation (1905, 1914) can be employed only for the calculation of the energy characteristics of the radiation field (energy density and energy flux density) and cannot be used to characterize the angular distribution of radiation field. However, such an inference is not valid. In several cases, one can calculate the radiation intensity inside matter and the reflected radiation with the aid of this simplest approximation in the transport theory. In this work, we use the results of the simplest one-parameter variant of the two-flux approximation to calculate the angular distribution (reflection function) of the radiation reflected by a semi-infinite isotropically scattering dissipative medium when a relatively broad beam is incident on the medium at an arbitrary angle relative to the surface. We do not employ the invariance principle and demonstrate that the reflection function exhibits the multiplicative property. It can be represented as a product of three functions: the reflection function corresponding to the single scattering and two identical h functions, which have the same physical meaning as the Ambartsumyan-Chandrasekhar function (H) has. This circumstance allows a relatively easy derivation of simple analytical expressions for the H function, total reflectance, and reflection function. We can easily determine the relative contribution of the true single scattering in the photon backscattering at an arbitrary probability of photon survival Λ. We compare all of the parameters of the backscattered radiation with the data resulting from the calculations using the exact theory of Ambartsumyan, Chandrasekhar, et al., which was developed decades after the two-flux approximation. Thus, we avoid the application of fine mathematical methods (the Wiener-Hopf method, the Case method of singular functions, etc.) and obtain simple analytical expressions for the parameters of the scattered radiation. Note that the simplicity of the expressions is supplemented with unexpectedly high accuracy. The results demonstrate the unknown possibilities offered by the two-flux approximation, which is the simplest approximate method to solve the equations of transport theory. We assume that the method can be employed in the calculations of the angular characteristics of the reflected radiation for media whose single scattering is described using complicated (in comparison with isotropic) laws.  相似文献   

18.
对各种红外系统的灵敏度方程的修正   总被引:1,自引:0,他引:1       下载免费PDF全文
张幼文 《物理学报》1980,29(7):813-828
当目标为灰体时,尤其是目标温度与环境物体的温度相近时,必须同时考虑目标的自身辐射和它对环境辐射的反射。这样,各种红外系统的灵敏度方程就需要修正。根据这些修正后的方程,就可以解释原来只考虑自身辐射的方程所无法解释的实验现象。其中,对于热成象系统,我们作了重点讨论,不但考虑了场景中相邻单元的温差、比辐射率差和反射率差的影响,而且考虑了扫描效率、扫描重迭率、串联或并联列阵元件、加场镜或浸没透镜等的影响,得到比较完整的灵敏度方程和噪声等效温差NETD的表达式。对于NETD中的积分XT的计算方法,我们也作了介绍并给出数值表。 关键词:  相似文献   

19.
于靖  卜雄洙  牛杰  王新征 《物理学报》2016,65(7):79501-079501
针对导航控制系统对姿态测试技术多元化、新型化和低成本的要求, 提出了一种基于地球红外辐射的旋转飞行体姿态估计方法. 首先, 根据地球红外辐射的产生机理, 结合红外辐射在大气中的传播规律, 建立了地球红外辐射模型. 然后, 分析了旋转飞行体的运动特征, 构建了红外传感器的测量模型. 为了探索红外传感器的输出信号与旋转飞行体的姿态信息之间的内在联系, 研究了不同姿态角和视场角下的传感器输出信号特征. 最后, 为了提高旋转飞行体的姿态测试精度, 设计了基于三轴红外传感器的扩展卡尔曼滤波算法来估计姿态角和横滚角速度. 结果表明: 利用地球红外辐射场进行姿态测试的方法有效可行, 俯仰角估计误差在±0.1°, 横滚角估计误差在±0.05°, 横滚角速度估计误差在±1 rad/s. 该姿态测量方法简单有效, 能够满足旋转飞行体的姿态测量要求.  相似文献   

20.
The flash method is the most used technique to measure the thermal diffusivity of solids. It consists of heating the front face of an opaque slab by a short light pulse and detecting the temperature evolution at its rear surface, from which the thermal diffusivity is retrieved. In this paper we extend the classical flash method to be used with rods and tubes. First, the temperature evolution of the surface temperature of solid and hollow cylinders is calculated. Then, experimental measurements of a set of stainless steel samples using an infrared camera confirm the validity of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号