首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different drug classes such as antineoplastic drugs (anthracyclines, cyclophosphamide, 5-fluorouracil, taxanes, tyrosine kinase inhibitors), antiretroviral drugs, antipsychotic, and immunosuppressant drugs are known to induce cardiotoxic and neurotoxic effects. Recent studies have demonstrated that the impairment of the nuclear factor erythroid 2–related factor 2 (Nrf2) pathway is a primary event in the pathophysiology of drug-induced cardiotoxicity and neurotoxicity. The Nrf2 pathway regulates the expression of different genes whose products are involved in antioxidant and inflammatory responses and the detoxification of toxic species. Cardiotoxic drugs, such as the anthracycline doxorubicin, or neurotoxic drugs, such as paclitaxel, suppress or impair the Nrf2 pathway, whereas the rescue of this pathway counteracts both the oxidative stress and inflammation that are related to drug-induced cardiotoxicity and neurotoxicity. Therefore Nrf2 represents a novel pharmacological target to develop new antidotes in the field of clinical toxicology. Interestingly, carnosine (β-alanyl-l-histidine), an endogenous dipeptide that is characterized by strong antioxidant, anti-inflammatory, and neuroprotective properties is able to rescue/activate the Nrf2 pathway, as demonstrated by different preclinical studies and preliminary clinical evidence. Starting from these new data, in the present review, we examined the evidence on the therapeutic potential of carnosine as an endogenous antidote that is able to rescue the Nrf2 pathway and then counteract drug-induced cardiotoxicity and neurotoxicity.  相似文献   

2.
3.
Oxidative stress, which refers to unbalanced accumulation of reactive oxygen species (ROS) levels in cells, has been linked to acute and chronic diseases. Nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays a vital role in regulating cytoprotective genes and enzymes in response to oxidative stress. Therefore, pharmacological regulation of Nrf2/ARE pathway is an effective method to treat several diseases that are mainly characterized by oxidative stress and inflammation. Natural products that counteract oxidative stress by modulating Nrf2 have contributed significantly to disease treatment. In this review, we focus on bioactive compounds derived from food that are Nrf2/ARE pathway regulators and describe the molecular mechanisms for regulating Nrf2 to exert favorable effects in experimental models of diseases.  相似文献   

4.
5.
Cancer is one of the most fatal diseases with an increasing incidence and mortality all over the world. Thus, there is an urgent need for novel therapies targeting major cancer-related pathways. Nuclear factor-erythroid 2-related factor 2 (NRF2) and its major negative modulator Kelch-like ECH-associated protein 1 (KEAP1) are main players of the cellular defense mechanisms against internal and external cell stressors. However, NRF2/KEAP1 signaling pathway is dysregulated in various cancers, thus promoting tumor cell survival and metastasis. In the present review, we discuss the mechanisms of normal and deregulated NRF2 signaling pathway focusing on its cancer-related functions. We further explore activators and inhibitors of this pathway as cancer targeting drug candidates in order to provide an extensive background on the subject.  相似文献   

6.
7.
8.
9.
Astragalus membranaceus is a famous herb found among medicinal and food plants in East and Southeastern Asia. The Nrf2-ARE assay-guided separation of an extract from Jing liqueur led to the identification of a nontoxic Nrf2 activator, methylnissolin-3-O-β-d-glucopyranoside (MNG, a component of A. membranaceus). Nrf2 activation by MNG has not been reported before. Using Western Blot, RT-qPCR and imaging, we investigated the cytoprotective effect of MNG against hydrogen peroxide-induced oxidative stress. MNG induced the expression of Nrf2, HO-1 and NQO1, accelerated the translocation of Nrf2 into nuclei, and enhanced the phosphorylation of AKT. The MNG-induced expression of Nrf2, HO-1, and NQO1 were abolished by Nrf2 siRNA, while the MNG-induced expression of Nrf2 and HO-1 was abated and the AKT phosphorylation was blocked by LY294002 (a PI3K inhibitor). MNG reduced intracellular ROS generation. However, the protection of MNG against the H2O2 insult was reversed by Nrf2 siRNA with decreased cell viability. The enhancement of Nrf2 and HO-1 by MNG upon H2O2 injury was reduced by LY294002. These data showed that MNG protected EA.hy926 cells against oxidative damage through the Nrf2/HO-1 and at least partially the PI3K/Akt pathways.  相似文献   

10.
Novel multitarget-directed ligands BIGI 4a-d and BIGI 5a-d were designed and synthesized with a simple and cost-efficient procedure via a one-pot three-component Biginelli reaction targeting acetyl-/butyrylcholinesterases inhibition, calcium channel antagonism, and antioxidant ability. Among these multitarget-directed ligands, BIGI 4b, BIGI 4d, and BIGI 5b were identified as promising new hit compounds showing in vitro balanced activities toward the recognized AD targets. In addition, these compounds showed suitable physicochemical properties and a good druglikeness score predicted by Data Warrior software.  相似文献   

11.
Aims: Annexin A5 (ANXA5) exhibited potent antithrombotic, antiapoptotic, and anti-inflammatory properties in a previous study. The role of ANXA5 in traumatic brain injury (TBI)-induced intestinal injury is not fully known. Main methods: Recombinant human ANXA5 (50 µg/kg) or vehicle (PBS) was administered to mice via the tail vein 30 min after TBI. Mouse intestine tissue was gathered for hematoxylin and eosin staining 0.5 d, 1 d, 2 d, and 7 d after modeling. Intestinal Western blotting, immunofluorescence, TdT-mediated dUTP nick-end labeling staining, and enzyme-linked immunosorbent assays were performed 2 days after TBI. A series of kits were used to assess lipid peroxide indicators such as malonaldehyde, superoxide dismutase activity, and catalase activity. Key findings: ANXA5 treatment improved the TBI-induced intestinal mucosa injury at different timepoints and significantly increased the body weight. It significantly reduced apoptosis and matrix metalloproteinase-9 and inhibited the degradation of tight-junction-associated protein in the small intestine. ANXA5 treatment improved intestinal inflammation by regulating inflammation-associated factors. It also mitigated the lipid peroxidation products 4-HNE, 8-OHDG, and malonaldehyde, and enhanced the activity of the antioxidant enzymes, superoxide dismutase and catalase. Lastly, ANXA5 significantly enhanced nuclear factor E2-related factor 2 (Nrf2) and hemeoxygenase-1, and decreased high mobility group box 1 (HMGB1). Significance: Collectively, the results suggest that ANXA5 inhibits TBI-induced intestinal injury by restraining oxidative stress and inflammatory responses. The mechanisms involved sparking the Nrf2/hemeoxygenase-1-induced antioxidant system and suppressing the HMGB1 pathway. ANXA5 may be an attractive therapeutic candidate for protecting against TBI-induced intestinal injury.  相似文献   

12.
Gastrodia elata Bl. has a long edible history and is considered an important functional food raw material. Gastrodin (GAS) is one of the main functional substances in G. elata BI. and can be used as a health care product for the elderly to enhance resistance and delay aging. This study investigated the ameliorative effect and mechanism of GAS on cognitive dysfunction in vascular dementia (VaD) rats, which provides a theoretical basis for development and utilization of functional food. The water maze test shows that GAS improves learning and memory impairment in VaD rats. Meanwhile; GAS significantly decreased the levels of Fe2+ and malondialdehyde (MDA); increased the content of glutathione (GSH); and significantly up-regulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase 4 (GPx4), the key regulatory factors of ferroptosis; while it down-regulated the expression of kelch-like ECH-associated protein (Keap1) and cyclooxygenase 2 (COX2). However, GAS does not directly regulate GPx4 and COX2 to inhibit ferroptosis. Furthermore, compared with GAS alone, GAS combined with Bardoxolone (an agonist of Nrf2) did not further affect the increase in GPx4 levels and decrease in COX2 levels, nor did it further affect the regulation of GAS on the biochemical parameters of ferroptosis in HT22 hypoxia injury. These findings revealed that GAS inhibited ferroptosis in hippocampal neurons by activating the Nrf2/Keap1-GPx4 signaling pathway, suggesting its possible application as a functional food for improving vascular dementia by inhibiting ferroptosis.  相似文献   

13.
Drug-induced liver and kidney damage is an emergent clinical issue that should be addressed. Rosmarinic acid (RA) has obvious anti-inflammatory and antioxidant effects, so we evaluated the anti-inflammatory and antioxidant effects of RA pretreatment on serum and liver and kidney tissues of cisplatin (CP)-treated mice and explored the possible mechanisms. The results showed that RA pretreatment effectively downregulated the serum, liver, and kidney levels of ALT, AST, BUN, and CRE and the inflammatory factors IL-1β, IL-6, and TNF-α, and simultaneously enhanced the total antioxidant capacity of the liver and kidney. RA pretreatment significantly reduced the levels of MPO, MDA, and NO in liver and kidney tissue, inhibited the mRNA expression of IL-1β, IL-6, and TNF-α in liver and kidney tissue, activated the Nrf2 signaling pathway, and upregulated the mRNA expression of downstream target genes. Our findings show that RA could effectively prevent and alleviate acute liver and kidney injury caused by CP.  相似文献   

14.
15.
16.
Four new benzoylamide derivatives, lepidiumamide B–E (1–4), were isolated from the seeds of Lepidium apetalum Willd. The structures were determined by a combination of MS and NMR analyses. All compounds were evaluated for their protective effects against NRK-52e cell injury induced by lipopolysaccharide (LPS) in vitro. These compounds showed significantly protective activity and ameliorated LPS-induced NRK52e cells via the Nrf2/Keap1 pathway. The discovery of these active compounds is important for the prevention and treatment of renalinjury.  相似文献   

17.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by the degeneration of motor neurons. Mutations in Cu/Zn superoxide dismutase (SOD1), including G93A, were reportedly linked to familial ALS. SOD1 is a key antioxidant enzyme, and is also one of the major targets for oxidative damage in the brains of patients suffering from Alzheimer''s disease (AD). Several lines of evidence suggest that intracellular amyloid beta (Aβ) is associated with the pathogenesis of AD. In this report we demonstrate that intracellular Aβ directly interacts with SOD1, and that this interaction decreases the enzymatic activity of the enzyme. We observed Aβ-SOD1 aggregates in the perinuclear region of H4 cells, and mapped the SOD1 binding region to Aβ amino acids 26-42. Interestingly, intracellular Aβ binds to the SOD1 G93A mutant with greater affinity than to wild-type SOD1. This resulted in considerably less mutant enzymatic activity. Our study implicates a potential role for Aβ in the development of ALS by interacting with the SOD1 G93A mutant.  相似文献   

18.
The aim of the study was to evaluate the influence of vitamin K2 (VK2) supplementation on the sphingolipid metabolism pathway in palmitate-induced insulin resistant hepatocytes. The study was carried out on human hepatocellular carcinoma cells (HepG2) incubated with VK2 and/or palmitic acid (PA). The concentrations of sphingolipids were measured by high-performance liquid chromatography. The expression of enzymes from the sphingolipid pathway was assessed by Western blotting. The same technique was used in order to determine changes in the expression of the proteins from the insulin signaling pathway in the cells. Simultaneous incubation of HepG2 cells with palmitate and VK2 elevated accumulation of sphinganine and ceramide with increased expression of enzymes from the ceramide de novo synthesis pathway. HepG2 treatment with palmitate and VK2 significantly decreased the insulin-stimulated expression ratio of insulin signaling proteins. Moreover, we observed that the presence of PA w VK2 increased fatty acid transport protein 2 expression. Our study showed that VK2 activated the ceramide de novo synthesis pathway, which was confirmed by the increase in enzymes expression. VK2 also intensified fatty acid uptake, ensuring substrates for sphingolipid synthesis through the de novo pathway. Furthermore, increased concentration of sphingolipids, mainly sphinganine, inhibited insulin pathway proteins phosphorylation, increasing insulin resistance development.  相似文献   

19.
20.
The application of advanced oxidation processes (AOPs) based on sulfate radicals for degrading persistent organic pollutants faces challenges due to the inefficient activation of peroxydisulfate (PDS) oxidant. Herein, a composite CoFe2O4/MoS2-xOy (CFM) catalyst consisting of CoFe2O4 nanoparticles uniformly dispersed on the nanosheets of oxygen-incorporated MoS2 (MoS2-xOy) with flower-like morphology are fabricated through a facile two-step hydrothermal method, which results in the enhanced activation of PDS and a highly efficient degradation of phenolic pollutants. The oxygen-doping in MoS2-xOy leads to unsaturated sulfur and active sites on the surface of MoS2 for accelerating the rate limiting step of FeIII/FeII reduction cycle in PDS-CFM reaction. Aiming at the refractory organic pollutants in actual coking wastewater, CFM co-catalyst is introduced into a hydrogel made up of polyvinyl alcohol (PVA) and coal-tar pitch oxides (PO) to construct a multifunctional CFM@PO/PVA hydrogel. Upon hybrid CFM@PO/PVA, the coupling of the enhanced AOP with solar-driven interfacial vapor generation (SIVG) technology contributes to the degradation efficiency, the removal rate of phenol in solution and the total organic carbon in coking wastewater can reach 98 % and 91 %, respectively. The integration of heterogeneous AOPs with SIVG system provides a feasible strategy for the eco-friendly efficient purification of industrial wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号