首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A lectin has successfully been isolated from Phaseolus vulgaris cv. Chinese pinto bean using affinity chromatography, ion exchange chromatography, and gel filtration in succession, with a 15.4-fold purification. Investigation of its characteristics revealed that Chinese pinto bean lectin (CPBL) was a 58-kDa dimeric glucosamine-binding protein. Its Mg2+-dependent hemagglutinating activity was stable at pH 7–8 and at or below 60 °C. When the purified lectin was tested against six fungal species including Phyllosticta citriasiana, Magnaporthe grisea, Bipolans maydis, Valsa mali, Mycosphaerella arachidicola, and Setosphaeria turcica, only the mycelial growth of V. mali was reduced by 30.6 % by the lectin at 30 μM. The lectin did not exert any discernible antiproliferative effects on breast cancer MCF-7 cells, but was able to suppress proliferation of nasopharyngeal carcinoma HONE-1 cells, with an IC50 of 17.3 μM, as revealed by the MTT assay. Since few plant lectins demonstrate antifungal activity against V. mali, and not many others have inhibitory effects on HONE-1 cells, CPBL is a distinctive lectin which may be exploited for development into an agent against V. mali and HONE-1 cells.  相似文献   

2.
3.
The search for novel antitrypanosomals and the investigation into their mode of action remain crucial due to the toxicity and resistance of commercially available antitrypanosomal drugs. In this study, two novel antitrypanosomals, tortodofuordioxamide (compound 2) and tortodofuorpyramide (compound 3), were chemically derived from the natural N-alkylamide tortozanthoxylamide (compound 1) through structural modification. The chemical structures of these compounds were confirmed through spectrometric and spectroscopic analysis, and their in vitro efficacy and possible mechanisms of action were, subsequently, investigated in Trypanosoma brucei (T. brucei), one of the causative species of African trypanosomiasis (AT). The novel compounds 2 and 3 displayed significant antitrypanosomal potencies in terms of half-maximal effective concentrations (EC50) and selectivity indices (SI) (compound 1, EC50 = 7.3 μM, SI = 29.5; compound 2, EC50 = 3.2 μM, SI = 91.3; compound 3, EC50 = 4.5 μM, SI = 69.9). Microscopic analysis indicated that at the EC50 values, the compounds resulted in the coiling and clumping of parasite subpopulations without significantly affecting the normal ratio of nuclei to kinetoplasts. In contrast to the animal antitrypanosomal drug diminazene, compounds 1, 2 and 3 exhibited antioxidant absorbance properties comparable to the standard antioxidant Trolox (Trolox, 0.11 A; diminazene, 0.50 A; compound 1, 0.10 A; compound 2, 0.09 A; compound 3, 0.11 A). The analysis of growth kinetics suggested that the compounds exhibited a relatively gradual but consistent growth inhibition of T. brucei at different concentrations. The results suggest that further pharmacological optimization of compounds 2 and 3 may facilitate their development into novel AT chemotherapy.  相似文献   

4.
Enzymes that degrade pectin are called pectinases. Pectinases of microbial origin are used in juice clarification as the process is cost-effective. This study screened a pectinase-producing bacterium isolated from soil and identified as Bacillus subtilis 15A B-92 based on the 16S rRNA molecular technique. The purified pectinase from the isolate showed 99.6 U/mg specific activity and 11.6-fold purity. The molecular weight of the purified bacterial pectinase was 14.41 ± 1 kD. Optimum pectinase activity was found at pH 4.5 and 50 °C, and the enzyme was 100% stable for 3.5 h in these conditions. No enzymatic inhibition or activation effect was seen with Fe2+, Ca2+, or Mg2+. However, a slight inhibition was seen with Cu2+, Mn2+, and Zn2+. Tween 20 and 80 slightly inhibited the pectinase, whereas iodoacetic acid (IAA), ethylenediaminetetraacetate (EDTA), urea, and sodium dodecyl sulfate (SDS) showed potent inhibition. The bacterial pectinase degraded citrus pectin (100%); however, it was inactive in the presence of galactose. With citrus pectin as the substrate, the Km and Vmax were calculated as 1.72 mg/mL and 1609 U/g, respectively. The high affinity of pectinase for its substrate makes the process cost-effective when utilized in food industries. The obtained pectinase was able to clarify orange and apple juices, justifying its application in the food industry.  相似文献   

5.
Red Delicious apple pomace was produced at laboratory scale with a domestic blender and different non-conventional extraction techniques were performed to isolate phenolic compounds, such as ultrasound-assisted extraction (UAE), ultraturrax extraction (UTE), accelerated solvent extraction (ASE) and pulsed electric field (PEF) extraction pre-treatment. Total phenolic content (TPC) was determined by Folin–Ciocalteu assay. Phloridzin, the main phenolic compound in apples, was determined by chromatographic analysis Q-TOF-LC/MS. The results obtained with these techniques were compared in order to identify the most efficient method to recover polyphenols. The highest value of TPC (1062.92 ± 59.80 µg GAE/g fresh apple pomace) was obtained when UAE was performed with EtOH:H2O (50:50, v/v), while ASE with EtOH:H2O (30:70, v/v) at 40 °C and 50% of flush was the most efficient technique in the recovery of phloridzin. The concentration of the main phenolic compounds ranged from 385.84 to 650.56 µg/g fresh apple pomace. The obtained results confirm that apple pomace represents an interesti-ng by-product, due to the presence of phenolic compounds. In particular, phloridzin could be considered a biomarker to determine the quality of numerous apple products. Therefore, this research could be a good starting point to develop a value-added product such as a functional food or nutraceutical.  相似文献   

6.
A new family of ten dinuclear Ru(ii) complexes based on the bis[pyrrolyl Ru(ii)] triad scaffold, where two Ru(bpy)2 centers are separated by a variety of organic linkers, was prepared to evaluate the influence of the organic chromophore on the spectroscopic and in vitro photodynamic therapy (PDT) properties of the compounds. The bis[pyrrolyl Ru(ii)] triads absorbed strongly throughout the visible region, with several members having molar extinction coefficients (ε) ≥ 104 at 600–620 nm and longer. Phosphorescence quantum yields (Φp) were generally less than 0.1% and in some cases undetectable. The singlet oxygen quantum yields (ΦΔ) ranged from 5% to 77% and generally correlated with their photocytotoxicities toward human leukemia (HL-60) cells regardless of the wavelength of light used. Dark cytotoxicities varied ten-fold, with EC50 values in the range of 10–100 μM and phototherapeutic indices (PIs) as large as 5400 and 260 with broadband visible (28 J cm–2, 7.8 mW cm–2) and 625 nm red (100 J cm–2, 42 mW cm–2) light, respectively. The bis[pyrrolyl Ru(ii)] triad with a pyrenyl linker (5h) was especially potent, with an EC50 value of 1 nM and PI > 27 000 with visible light and subnanomolar activity with 625 nm light (100 J cm–2, 28 mW cm–2). The lead compound 5h was also tested in a tumor spheroid assay using the HL60 cell line and exhibited greater photocytotoxicity in this more resistant model (EC50 = 60 nM and PI > 1200 with 625 nm light) despite a lower dark cytotoxicity. The in vitro PDT effects of 5h extended to bacteria, where submicromolar EC50 values and PIs >300 against S. mutans and S. aureus were obtained with visible light. This activity was attenuated with 625 nm red light, but PIs were still near 50. The ligand-localized 3ππ* state contributed by the pyrenyl linker of 5h likely plays a key role in its phototoxic effects toward cancer cells and bacteria.  相似文献   

7.
The present research was devoted to evaluating the effect of provenance and wood pyrolysis process on the phytochemical and antioxidant activity of essential oils extracted from sawdust and tar of Cedrus atlantica Manetti of Morocco. The essential oils were obtained by hydro-distillation from Cedar wood growing in two geographical locations of the Middle Atlas of Morocco (Senoual and Itzer forests) using a Clevenger-type apparatus and analyzed by Gas Chromatography-Mass spectrometry (GC/MS). Seventy compounds were approximately identified for each essential oil, accounting for 94% of the total oil’s composition, with the predominance of sesquiterpene hydrocarbons, where, α-himachalene (13.75%, 1.15%, 12.2%, and 16.69%) and β-himachalene (24.05%, 24.25%, 27.67%, and 44.23%) represented the major constituents in the four essential oils obtained. Multivariate analysis was used to discriminate the essential oils using principal component analysis (PCA) and Hierarchical Clustering Analysis (HCA). In addition, heatmap for dendrogram was used to investigate any correlation between the chemical profiles of each essential oil. Moreover, the antioxidant properties of the essential oils were studied using DPPH scavenging and Ferric Ion Reducing Power (FRAP). The results indicate that the essential oils from wood tar of Cedrus atlantica possess a strong antioxidant activity (IC50 = 0.126 mg/mL and 0.143 mg/mL) in comparison with those from sawdust (IC50 = 15.6 mg/mL and 16.3 mg/mL).  相似文献   

8.
Chagas disease (CD) affects more than 6 million people worldwide. The available treatment is far from ideal, creating a demand for new alternative therapies. Botanical diversity provides a wide range of novel potential therapeutic scaffolds. Presently, our aim was to evaluate the mammalian host toxicity and anti-Trypanosoma cruzi activity of botanic natural products including extracts, fractions and purified compounds obtained from Brazilian flora. In this study, 36 samples of extracts and fractions and eight pure compounds obtained from seven plant species were evaluated. The fraction dichloromethane from Aureliana fasciculata var. fasciculata (AFfPD) and the crude extract of Piper tectoniifolium (PTFrE) showed promising trypanosomicidal activity. AFfPD and PTFrE presented EC50 values 10.7 ± 2.8 μg/mL and 12.85 ± 1.52 μg/mL against intracellular forms (Tulahuen strain), respectively. Additionally, both were active upon bloodstream trypomastigotes (Y strain), exhibiting EC50 2.2 ± 1.0 μg/mL and 38.8 ± 2.1 μg/mL for AFfPD and PTFrE, respectively. Importantly, AFfPD is about five-fold more potent than Benznidazole (Bz), the reference drug for CD, also reaching lower EC90 value (7.92 ± 2.2 μg/mL) as compared to Bz (23.3 ± 0.6 μg/mL). Besides, anti-parasitic effect of eight purified botanic substances was also investigated. Aurelianolide A and B (compounds 1 and 2) from A. fasciculata and compound 8 from P. tuberculatum displayed the best trypanosomicidal effect. Compounds 1, 2 and 8 showed EC50 of 4.6 ± 1.3 μM, 1.6 ± 0.4 μM and 8.1 ± 0.9 μM, respectively against intracellular forms. In addition, in silico analysis of these three biomolecules was performed to predict parameters of absorption, distribution, metabolism and excretion. The studied compounds presented similar ADMET profile as Bz, without presenting mutagenicity and hepatotoxicity aspects as predicted for Bz. Our findings indicate that these natural products have promising anti-T. cruzi effect and may represent new scaffolds for future lead optimization.  相似文献   

9.
Phytochemical investigation of leaves and stembark of Artocarpus lacucha collected in Thailand resulted in three yet undescribed isomeric flavan-3-ol derivatives (1–3), the four known compounds gambircatechol (4), (+)-catechin (5), (+)-afzelechin (6) and the stilbene oxyresveratrol (7). Compounds 1 to 3 feature 6/6/5/6/5/6 core structures. All structures were deduced by NMR and MS, while density functional theory (DFT) calculations on B3LYP theory level were performed of compounds 1 to 3 to support the stereochemistry in positions 2 and 3 in the C-ring. Possible biosynthetic pathways leading to 4 are discussed. The DPPH assay revealed high radical scavenging activities for 1 (EC50 = 9.4 ± 1.0 µmol mL−1), 2 (12.2 ± 1.1), 3 (10.0 ± 1.5) and 4 (19.0 ± 2.6), remarkably lower than ascorbic acid (EC50 = 34.9) and α-tocopherol (EC50 = 48.6). A cytotoxicity assay revealed moderate but consistent antiproliferative properties of 1 in CH1/PA-1 (ovarian teratocarcinoma) and SW480 (colon carcinoma) cells, with IC50 values of 25 ± 6 and 34 ± 4 µM, respectively, whereas effects in A549 (non-small cell lung cancer) cells were rather negligible. The performed DCFH-DA assay of 1 in the former cell lines confirmed potent antioxidative effects even in the cellular environment.  相似文献   

10.
Many plants that are commonly used in folk medicine have multidirectional biological properties confirmed by scientific research. One of them is Aerva lanata (L.) Juss. (F. Amaranthaceae). It is widely used, but there are very few scientific data about its chemical composition and pharmacological activity. The aim of the present study was to investigate the chemical composition of phenolic acid (PA)-rich fractions isolated from methanolic extracts of A. lanata (L.) Juss. herb using the liquid/liquid extraction method and their potential antioxidant, anti-inflammatory, and anti-diabetic properties. The free PA fraction (FA), the PA fraction (FB) released after acid hydrolysis, and the PA fraction (FC) obtained after alkaline hydrolysis were analysed using liquid chromatography/electrospray ionization triple quadrupole mass spectrometry (LC-ESI-MS/MS). The phenolic profile of each sample showed a high concentration of PAs and their presence in A. lanata (L.) Juss. herb mainly in bound states. Thirteen compounds were detected and quantified in all samples, including some PAs that had not been previously detected in this plant species. Bioactivity assays of all fractions revealed high 2,2-diphenyl-1-picrylhydrazyl (DPPH) (2.85 mM Trolox equivalents (TE)/g) and 2,2-azino-bis-3(ethylbenzthiazoline-6-sulphonic acid) (ABTS•+) (2.88 mM TE/g) scavenging activity. Fraction FB definitely exhibited not only the highest antiradical activity but also the strongest xanthine oxidase (XO) (EC50 = 1.77 mg/mL) and lipoxygenase (LOX)(EC50 = 1.88 mg/mL) inhibitory potential. The fraction had the best anti-diabetic properties, i.e., mild inhibition of α-amylase (EC50 = 7.46 mg/mL) and strong inhibition of α-glucosidase (EC50 = 0.30 mg/mL). The activities of all analysed samples were strongly related to the presence of PA compounds and the total PA content.  相似文献   

11.
Chrozophora tinctoria is an annual plant of the family Euphorbiaceae, traditionally used as a laxative, a cathartic and an emetic. A methanolic extract of Chrozophora tinctoria (MEC) whole plant and an n-butanol fraction of Chrozophora tinctoria (NBFC) were analyzed by gas chromatography–mass spectrometry (GC-MS) to detect the phytochemicals. MEC and NBFC were tested for in vitro anti acetylcholinesterase (AChE) potential. The effect of both samples on intestinal propulsive movement and spasmolytic activity in the gastrointestinal tract (GIT) was also studied. About twelve compounds in MEC and three compounds in NBFC were tentatively identified through GC-MS. Some of them are compounds with known therapeutic activity, such as toluene; imipramine; undecane; 14-methyl-pentadecanoic acid methyl ester; and hexadecanoic acid. Both NBFC and MEC samples were checked for acute toxicity and were found to be highly toxic in a dose-dependent manner, causing diarrhea and emesis at 1 g/kg concentration in pigeons, with the highest lethargy and mortality above 3 g/kg. Both the samples of Chrozophora tinctoria revealed significant (p ≤ 0.01) laxative activity against metronidazole (7 mg/kg) and loperamide hydrochloride (4 mg/kg)-induced constipation. NBFC (81.18 ± 2.5%) and MEC (68.28 ± 2.4%) significantly increased charcoal meal intestinal transit compared to distal water (41.15 ± 4.3%). NBFC exhibited a significant relaxant effect (EC50 = 3.40 ± 0.20 mg/mL) in spontaneous rabbit jejunum as compared to MEC (EC50 = 4.34 ± 0.68 mg/kg). Similarly, the impact of NBFC on KCl-induced contraction was more significant than that of MEC (EC50 values of 7.22 ± 0.06 mg/mL and 7.47 ± 0.57 mg/mL, respectively). The present study scientifically validates the folk use of Chrozophora tinctoria in the management of gastrointestinal diseases such as constipation. Further work is needed to isolate the phytochemicals that act as diarrheal agents in Chrozophora tinctoria.  相似文献   

12.
Fungal pathogens have evolved combinations of plant cell-wall-degrading enzymes (PCWDEs) to deconstruct host plant cell walls (PCWs). An understanding of this process is hoped to create a basis for improving plant biomass conversion efficiency into sustainable biofuels and bioproducts. Here, an approach integrating enzyme activity assay, biomass pretreatment, field emission scanning electron microscopy (FESEM), and genomic analysis of PCWDEs were applied to examine digestibility or degradability of selected woody and herbaceous biomass by pathogenic fungi. Preferred hydrolysis of apple tree branch, rapeseed straw, or wheat straw were observed by the apple-tree-specific pathogen Valsa mali, the rapeseed pathogen Sclerotinia sclerotiorum, and the wheat pathogen Rhizoctonia cerealis, respectively. Delignification by peracetic acid (PAA) pretreatment increased PCW digestibility, and the increase was generally more profound with non-host than host PCW substrates. Hemicellulase pretreatment slightly reduced or had no effect on hemicellulose content in the PCW substrates tested; however, the pretreatment significantly changed hydrolytic preferences of the selected pathogens, indicating a role of hemicellulose branching in PCW digestibility. Cellulose organization appears to also impact digestibility of host PCWs, as reflected by differences in cellulose microfibril organization in woody and herbaceous PCWs and variation in cellulose-binding domain organization in cellulases of pathogenic fungi, which is known to influence enzyme access to cellulose. Taken together, this study highlighted the importance of chemical structure of both hemicelluloses and cellulose in host PCW digestibility by fungal pathogens.  相似文献   

13.
The aim of the present study was to investigate the phenolic composition and the biological properties of different Aerva lanata (L). Juss. herb extracts obtained with the use of accelerated solvent extraction (ASE), i.e., a green, ecological method, for cosmetic purposes. All samples exhibited high DPPH (9.17–119.85 mg TE/g) and ABTS•+ (9.90–107.58 mg TE/g) scavenging activity. The extracts exhibited considerable anti-lipoxygenase (EC50 between 1.14 mg/mL and 3.73 mg/mL) and anti-xanthine oxidase (EC50 between 1.28 mg/mL and 3.72 mg/mL) activities, moderate chelating activity (EC50 between 1.58 mg/mL and 5.30 mg/mL), and high antioxidant potential in the ORAC assay (0.36–3.84 mM TE/g). Changes in the polyphenol profile of the analysed samples depending on the solvent and temperature used for the extraction were determined with the liquid chromatography/electrospray mass spectrometry (LC-ESI-MS/MS) method. Twenty-one phenolic compounds, including flavonoids and phenolic acids, were detected and quantified. It was shown that tiliroside was one of the main phenolic metabolites in the A. lanata (L.) Juss. herb., which may suggest that this compound may be largely responsible for the observed anti-inflammatory activity of the extracts. In addition, the studied extracts exhibited promising skin-related (anti-tyrosinase, anti-elastase, anti-collagenase, and anti-hyaluronidase) activity. This study showed that Aerva lanata (L.) Juss. contains high amounts of phenolic compounds, including tiliroside, and has good skin-related activities. Therefore, the plant may be interesting as a novel source of bioactive agents for cosmetic industries.  相似文献   

14.
The emetic Bacillus cereus toxin cereulide (1) poses a significant safety risk in the food industry, causing emesis and nausea after consumption of contaminated foods. Analogously to cereulide, the structures of various isocereulides, namely, isocereulides A–G, have been recently reported and could also be identified in B. cereus-contaminated food samples. The HPLC fractionation of B. cereus extracts allows us to isolate additional isocereulides. By applying MSn sequencing, post-hydrolytic dipeptide, amino acid and α-hydroxy acid analyses using UPLC-ESI-TOF-MS to purify the analytes, seven new isocereulides H–N (2–8) could be elucidated in their chemical structures. The structure elucidation was supported by one-dimensional and two-dimensional NMR spectra of the isocereulides H (2), K (5), L and N (6 + 8) and M (7). The toxicity of 2–8 was investigated in a HEp-2 cell assay to determine their respective 50% effective concentration (EC50). Thus, 2–8 exhibited EC50 values ranging from a 0.4- to 1.4-fold value compared to cereulide (1). Missing structure-activity correlations indicate the necessity to determine the toxic potential of all naturally present isocereulides as single compounds to be able to perform a thorough toxicity evaluation of B. cereus-contaminated foods in the future.  相似文献   

15.
Acceptance of toxicity bioassays as effective analytical tools in environmental areas needs guarantees of standardization but also validation. Ten European laboratories took part in an inter-laboratory study using different commercial devices based on bioluminescence inhibition of bacteria Vibrio fischeri. Reproducibility and stability by short toxicity endpoints, effective concentration that gives 10%, 50% and 80% of inhibition (EC10, EC50 and EC80) is evaluated. Parametric and non-parametric statistic is applied and performance of participant laboratories is addressed by z-scores calculated by non-parametric statistic. z-Score classification was based on harmonised protocol for proficiency testing of analytical laboratories (satisfactory |z| ≤ 2; questionable 2 < |z| ≤ 3; unsatisfactory |z| > 3). Tested samples were phenol, 3,5-dichlorophenol and influent wastewater. Based on z-score classification, more than 70% of the laboratories showed a satisfactory performance for phenol, 3,5-dichlorophenol and influent wastewater (86%, 90% and 70%, respectively). Reproducibility and stability was observed in toxicant references and in wastewater samples. EC80 determination appears to be more robust that EC10 and EC50. EC determinations can be considered favorable at 5 and 15 min of exposition, in particular for EC80. The use of different commercial devices can not be considered an additional source of variation.  相似文献   

16.
Emerging viral infections, including those caused by dengue virus (DENV) and Venezuelan Equine Encephalitis virus (VEEV), pose a significant global health challenge. Here, we report the preparation and screening of a series of 4-anilinoquinoline libraries targeting DENV and VEEV. This effort generated a series of lead compounds, each occupying a distinct chemical space, including 3-((6-bromoquinolin-4-yl)amino)phenol (12), 6-bromo-N-(5-fluoro-1H-indazol-6-yl)quinolin-4-amine (50) and 6-((6-bromoquinolin-4-yl)amino)isoindolin-1-one (52), with EC50 values of 0.63–0.69 µM for DENV infection. These compound libraries demonstrated very limited toxicity with CC50 values greater than 10 µM in almost all cases. Additionally, the lead compounds were screened for activity against VEEV and demonstrated activity in the low single-digit micromolar range, with 50 and 52 demonstrating EC50s of 2.3 µM and 3.6 µM, respectively. The promising results presented here highlight the potential to further refine this series in order to develop a clinical compound against DENV, VEEV, and potentially other emerging viral threats.  相似文献   

17.
We report the first isolation of the alkaloid aaptamine from the Philippine marine sponge Stylissa sp. Aaptamine possessed weak antiproliferative activity against HCT116 colon cancer cells and inhibited the proteasome in vitro at 50 µM. These activities may be functionally linked. Due to its known, more potent activity on certain G-protein coupled receptors (GPCRs), including α-adrenergic and δ-opioid receptors, the compound was profiled more broadly at sub-growth inhibitory concentrations against a panel of 168 GPCRs to potentially reveal additional targets and therapeutic opportunities. GPCRs represent the largest class of drug targets. The primary screen at 20 µM using the β-arrestin functional assay identified the antagonist, agonist, and potentiators of agonist activity of aaptamine. Dose-response analysis validated the α-adrenoreceptor antagonist activity of aaptamine (ADRA2C, IC50 11.9 µM) and revealed the even more potent antagonism of the β-adrenoreceptor (ADRB2, IC50 0.20 µM) and dopamine receptor D4 (DRD4, IC50 6.9 µM). Additionally, aaptamine showed agonist activity on selected chemokine receptors, by itself (CXCR7, EC50 6.2 µM; CCR1, EC50 11.8 µM) or as a potentiator of agonist activity (CXCR3, EC50 31.8 µM; CCR3, EC50 16.2 µM). These GPCRs play a critical role in the treatment of cardiovascular disease, diabetes, cancer, and neurological disorders. The results of this study may thus provide novel preventive and therapeutic strategies for noncommunicable diseases (NCDs).  相似文献   

18.
Cisplatin and other metallodrugs have realised great success in clinical chemotherapeutic applications as anticancer drugs. However, severe toxicity to healthy cells and non-selectivity to cancer cells remains a challenge, warranting the further search for alternative agents. Herein, we report the anticancer potential of a series of complexes of the general formula [MCl(p-cym)(k2-N^N-L)]+ X and [MCl(Cp*)(k2-N^N-L)]+ X, where M is the metal centre (Ru(II), Os(II), Rh(III) or Ir(III)), L = 1-benzyl-4-pyridinyl-1-H-1,2,3-triazole for L1 and 1-picolyl-4-pyridinyl-1-H-1,2,3-triazole for L2 and X = Cl, BF4, BPh4. When evaluated for activity against some cancerous and non-cancerous cell lines (namely, HeLa, HEK293, A549 and MT4 cancer cells and the normal healthy kidney cells (BHK21)), most of the compounds displayed poor cytotoxicities against cancer cells except for complexes C2 ([RuCl(p-cym)(k2-N^N-L1)]+ BPh4, EC50 = 9–16 µM and SI = 14), C7 ([RuCl(p-cym)(k2-N^N-L2)]+ BPh4, EC50 = 17–53 µM and SI = 4) and C11 ([IrCl(Cp*)(k2-N^N-L2)]+ BF4, EC50 < 5 µM and SI > 10). Selected complexes C1 ([RuCl(p-cym)(k2-N^N-L1)]+ BF4), C5 ([IrCl(Cp*)(k2-N^N-L1)]+ BF4) and C11 showed significant interactions with model biomolecules such as guanosine-5′-monophosphate (5′-GMP), bovine serum albumin (BSA) and amino acids under physiological conditions, possibly through carbenylation and N-coordination with 5′-GMP, N-coordination with L-Histidine and L-proline. While the compounds showed good activities in reducing pyruvate to lactate, there was no direct correlation between catalytic transfer hydrogenation of pyruvate and the observed cytotoxic activities. As observed in this work, the marked influence of single atom replacement in ligand may provide a pivotal approach to improving the cytotoxicity and fine-tuning the selectivity to cancer cells.  相似文献   

19.
Nacobbus aberrans ranks among the “top ten” plant-parasitic nematodes of phytosanitary importance. It causes significant losses in commercial interest crops in America and is a potential risk in the European Union. The nematicidal and phytotoxic activities of seven plant extracts against N. aberrans and Solanum lycopersicum were evaluated in vitro, respectively. The chemical nature of three nematicidal extracts (EC50,48h ≤ 113 µg mL−1) was studied through NMR analysis. Plant extracts showed nematicidal activity on second-stage juveniles (J2): (≥87%) at 1000 µg mL−1 after 72 h, and their EC50 values were 71.4–468.1 and 31.5–299.8 µg mL−1 after 24 and 48 h, respectively. Extracts with the best nematicidal potential (EC50,48h < 113 µg mL−1) were those from Adenophyllum aurantium, Alloispermum integrifolium, and Tournefortia densiflora, which inhibited L. esculentum seed growth by 100% at 20 µg mL−1. Stigmasterol (1), β-sitosterol (2), and α-terthienyl (3) were identified from A. aurantium, while 1, 2, lutein (4), centaurin (5), patuletin-7-β-O-glucoside (6), pendulin (7), and penduletin (8) were identified from A. integrifolium. From T. densiflora extract, allantoin (9), 9-O-angeloyl-retronecine (10), and its N-oxide (11) were identified. The present research is the first to report the effect of T. densiflora, A. integrifolium, and A. aurantium against N. aberrans and chemically characterized nematicidal extracts that may provide alternative sources of botanical nematicides.  相似文献   

20.
Ethanolic extracts of samples of temperate zone propolis, four from the UK and one from Poland, were tested against three Trypanosoma brucei strains and displayed EC50 values < 20 µg/mL. The extracts were fractionated, from which 12 compounds and one two-component mixture were isolated, and characterized by NMR and high-resolution mass spectrometry, as 3-acetoxypinobanksin, tectochrysin, kaempferol, pinocembrin, 4′-methoxykaempferol, galangin, chrysin, apigenin, pinostrobin, cinnamic acid, coumaric acid, cinnamyl ester/coumaric acid benzyl ester (mixture), 4′,7-dimethoxykaempferol, and naringenin 4′,7-dimethyl ether. The isolated compounds were tested against drug-sensitive and drug-resistant strains of T. brucei and Leishmania mexicana, with the highest activities ≤ 15 µM. The most active compounds against T. brucei were naringenin 4′,7 dimethyl ether and 4′methoxy kaempferol with activity of 15–20 µM against the three T. brucei strains. The most active compounds against L. mexicana were 4′,7-dimethoxykaempferol and the coumaric acid ester mixture, with EC50 values of 12.9 ± 3.7 µM and 13.1 ± 1.0 µM. No loss of activity was found with the diamidine- and arsenical-resistant or phenanthridine-resistant T. brucei strains, or the miltefosine-resistant L. mexicana strain; no clear structure activity relationship was observed for the isolated compounds. Temperate propolis yields multiple compounds with anti-kinetoplastid activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号