首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dried and crushed dandelion roots (Taraxacum officinale F. H. Wigg.) (TO) were used as a formulation additive (at the amount of 0, 1, 3, 4, 5, and 6 g 100 g−1 flour) to wheat bread. The farinographic properties of the dough and the physical and chemical properties of the bread were evaluated. It was found that the addition of dried flour caused a significant decrease in water absorption by the flour (1% and higher TO level), an increase in the development time (from 2% to 5% TO addition) and dough stability (3% and 4% TO level), and an increase in dough softening (4% and higher TO level). As the substitution of TO for wheat flour increased, there was a gradual decrease in loaf volume, an increase in specific weight and crumb hardness, and a darkening of the crumb color. The total polyphenol content increased linearly with the percentage increase of dried root additions TO from 0.290 to 0.394 mg GAE g−1 d.m., which translated into an increase in the antioxidant activity of the bread. It was found that dried crushed roots of Taraxacum officinale can be a recipe additive for wheat bread; however, due to their specific smell and bitter aftertaste, the level of this additive should not exceed 3 g 100 g−1 flour.  相似文献   

2.
Cyclodextrins (CDs) are cyclic oligosaccharides that have found widespread application in numerous fields. CDs have revealed a number of various health benefits, making them potentially useful food supplements and nutraceuticals. In this study, the impact of α-, β-, and γ-CD at different concentrations (up to 8% of the flour weight) on the wheat dough and bread properties were investigated. The impact on dough properties was assessed by alveograph analysis, and it was found that especially β-CD affected the viscoelastic properties. This behavior correlates well with a direct interaction of the CDs with the proteins of the gluten network. The impact on bread volume and bread staling was also assessed. The bread volume was in general not significantly affected by the addition of up to 4% CD, except for 4% α-CD, which slightly increased the bread volume. Larger concentrations of CDs lead to decreasing bread volumes. Bread staling was investigated by texture analysis and low field nuclear magnetic resonance spectroscopy (LF-NMR) measurements, and no effect of the addition of CDs on the staling was observed. Up to 4% CD can, therefore, be added to wheat bread with only minor effects on the dough and bread properties.  相似文献   

3.
Wheat bread, produced by the single-phase method, is a common food consumed all over the world. Due to changes in lifestyle and nutritional trends, alternative raw materials are sought to increase the nutritional value and improve the taste of daily consumed products. Additionally, customers seek a wide variety of foods, especially when it comes to basic foods. Nuts, such as coconuts or chestnuts, might provide an attractive flavour with benefits to the nutritional quality. In this study, the effect of substituting wheat flour with coconut or chestnut flour (flour contribution level: 5, 10, 15, 30, 50% w/w), was evaluated in terms of the breads specific volume, texture, colour, nutritional composition, and dietary fibre fraction contents. Moreover, a sensory evaluation was conducted to assess potential consumer acceptance. Based on the consumer’s perception, the overall acceptance of bread with 15% w/w of coconut and chestnut flour was in privilege compared to the control sample. As a result, taking all of the tested parameters into account, the breads with 5, 10, and 15% supplementation of chestnut or coconut flour were still of good quality compared to the wheat bread and their fibre content was significantly higher.  相似文献   

4.
Background: This study aimed to determine the effect of poppy seed flour (PF) on the physicochemical and spectroscopic properties of low-carbohydrate, high-protein, and gluten-free bread. Methods: The changes at the molecular level were assessed in bread using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Bread prepared with buckwheat, flaxseed, and pea protein was enriched with PF at a concentration of 5–15%. Results: The results showed that the pasting parameters of dough supplemented with PF were significantly decreased compared to the control sample. The obtained bread samples were characterized by good quality and had 14.6% of carbohydrate, 16.3% of protein, 10.2% of fiber, and 4.0% of fat, with a caloric value of 177 kcal/100 g. The addition of PF had little influence on crumb mechanical properties. The ATR-FTIR analyses revealed spectral changes in the region related to protein and carbohydrate structures, as well as changes in band intensity characteristic of α-1,4-glycoside and α-1,6-glycoside bonds. The analyses showed that the main starch skeleton remained clearly visible. Conclusions: PF up to 10% can be potentially applied as a functional ingredient in the production of bread based on buckwheat and linseed flour. Such low-carbohydrate bread can be particularly useful to diabetics.  相似文献   

5.
The study focused on the influence of starch modified by octenyl succinic anhydride (OSA) on the rheological and thermal properties of gluten-free dough containing corn and potato starch with the addition of pectin and guar gum as structure-forming substances. The starch blend used in the original dough recipe was partially (5% to 15%) replaced with OSA starch. The rheological properties of dough samples were determined, and the properties of the resulting bread were analyzed. It was found that the dough samples behaved as weak gels, and the values of storage and loss moduli (G′ and G″, respectively) significantly depended on angular frequency. Various shares of OSA starch in recipes modified dough in different ways, causing changes in its rheological characteristics. The introduction of OSA starch preparations resulted in changes in the bread volume and physical characteristics of the crumb. All the applied preparations caused an increase in bread porosity and the number of pores larger than 5 mm, and there was a parallel decrease in pore density. The presence of OSA starch preparations modified bread texture depending on the amount and type of the applied preparation. The introduction of OSA starches in gluten-free bread formulation caused a significant drop in the enthalpy of retrograded amylopectin decomposition, indicating a beneficial influence of such type of additive on staling retardation in gluten-free bread.  相似文献   

6.
The aim of this study was to investigate thermal and rheological properties of selected ancient grain flours and to evaluate rheological properties of mixtures thereof represented by pasta dough and dry pasta. Flours from spelt, einkorn, and emmer ancient wheat varieties were combined with quinoa flour. All these flour sources are considered healthy grains of high bioactive component content. Research results were compared to durum wheat flour or spelt wheat flour systems. Differential scanning calorimeter (DSC) and a rapid visco analyzer (RVA) were used to investigate the phase transition behavior of the flours and pasting characteristics of the flours and dried pasta. Angular frequency sweep experiments and creep and recovery tests of the pasta dough were performed. The main components modifying the pasta dough structure were starch and water. Moreover, the proportion of the individual flours influenced the rheological properties of the dough. The durum wheat dough was characterized by the lowest values of the K′ and K″ parameters of the power law models (24,861 Pa·sn′ and 10,687 Pa·sn″, respectively) and the highest values of the instantaneous (J0) and retardation (J1) compliances (0.453 × 10−4 Pa and 0.644 × 10−4 Pa, respectively). Replacing the spelt wheat flour with the other ancient wheat flours and quinoa flour increased the proportion of elastic properties and decreased values of the J0 and J1 of the pasta dough. Presence of the quinoa flour increased pasting temperature (from 81.4 up to 83.3 °C) and significantly influenced pasting viscosities of the spelt wheat pasta samples. This study indicates a potential for using mixtures of spelt, einkorn, and emmer wheat flours with quinoa flour in the production of innovative pasta dough and pasta products.  相似文献   

7.
This study aimed to utilize unripe green bananas obtained from those that were graded as unacceptable for export. Bread was selected as the product model for the application of banana flour. As carbohydrates and other functional active compounds make up the main composition of green bananas, unripe banana flour (UBF) was prepared and characterized. The chemical composition, physico-chemical properties, and functional properties of UBF, as well as its application in bread for wheat flour (WF) substitution at different levels, were investigated. Quality attributes of the bread were determined. High carbohydrate (89%), total dietary fiber (7%), ash (2%), potassium content and radical scavenging activity were found in UBF bread, while protein (15%) and fat contents (0.9%) were higher in WF bread (p < 0.05). Starch granules of different sizes and shapes (round, long and oblong) were observed in the starch from UBF bread. Solubility, swelling power, and the water absorption capacity of WF bread were greater than UBF bread (p < 0.05). The gelatinization enthalpy (ΔH) was 0.69 and 5.00 J/g for WF and UBF, respectively. The rapid viscoanalyzer (RVA) pasting profile showed that UBF bread had a higher pasting temperature, peak viscosity, breakdown, and final viscosity than WF bread (p < 0.05). Increasing the level of UBF caused an increase in bread hardness and a decrease in loaf volume (p < 0.05). We show that UBF can be considered a value-added product with health-promoting properties. The utilization of UBF as a functional food ingredient will benefit the consumer.  相似文献   

8.
Thermal analysis was used to check the role of the main components of buckwheat flour (polysaccharides and proteins) to assess guidelines for novel recipes for bread from wheat and buckwheat flour blends with improved nutritional properties. The structure-related poor protein quality, namely, the lack of network-forming links, severely limits the use of buckwheat flours in bread-making. Data from TG and DSC analysis indicate that the introduction of a de-hulling step in the buckwheat milling diagram and the addition of some buckwheat polysaccharide fractions, isolated from the buckwheat husk, that contribute to the formation of the crumb structure thanks to their effect on the phase separation driven by the thermodynamic incompatibility with wheat gluten proteins, allows one to tune opposite effects and obtain bread from de-hulled buckweat/wheat flour blends with alveolar distribution much close that of the wheat bread.  相似文献   

9.
Barley has widely known as an excellent source of dietary fiber. In this investigation, biscuits were prepared by substituting wheat flour (WF) with whole barley flour (WBF) at levels 20 and 40% as an attempt to improve the nutritional and functional quality of biscuits. Chemical, antioxidant, rheological, sensory and microbial properties were assessed. The blending with WBF, even at low ratio of inclusion (20%), caused an increase in protein, ash and crude fiber contents. The antioxidant activity was 41.5% in barley flour whereas it was only 2.03% in wheat flour, it was lowered to 1.35% in control biscuits and reached to the maximum 12.6% in biscuits prepared with 40% WBF. Water absorption, dough development and arrival time increased progressively with the elevation in WBF ratio. The lower level of WBF (20%) increased the stability of the dough. Extension, expansibility rheology and the dough energy were shortened with the increasing of WBF ratio. WBF-wheat biscuits up to the replacement ratio 40% possessed a high acceptance rating but the higher level (40%) resulted in lowering the surface color and appearance scores. The higher level (40%) incorporated into biscuits decreased the microbial load (Total bacterial, Spore-forming bacteria & Mold and yeast counts) during storage period.  相似文献   

10.
Τhe present study was carried out to evaluate wheat bread of three different flour compositions prepared by replacing water with untreated cheese whey (WCB). Bread prepared with water was taken as the control (CB). All breads were stored at 24 ± 1 °C for up to 6 days. Microbiological, physicochemical, and sensory analyses were determined as a function of storage time. WCB had lower total viable counts (TVC) (3.81 log cfu/g for CB and 2.78 log cfu/g for WCB on day 2 of storage) and showed delayed mold growth by 1 day (day 4 for CB and day 5 for WCB). WCB also had lower pH (5.91 for CB and 5.71 for WCB on day 0), higher titratable acidity values (TTA) (2.5–5.2 mL NaOH/10 g for CB and 4.5–6.8 mL NaOH/ 10 g for WCB), and higher protein content (PC) (PC 7.68% for CB and 8.88% for WCB). WCB was characterized by a more intense flavor, reduced hardness but similar cohesiveness, springiness, and adhesiveness compared to CB. Based primarily on sensory (appearance/mold formation) data, the shelf life of WCB was 4–5 days compared to 3–4 days for CB stored at 24 ± 1 °C. The proposed use of whey in bread preparation contributes decisively to the environmentally friendly management of whey.  相似文献   

11.
Starch gelatinization in wheat flour dough of various moisture contents was quantitatively evaluated by means of DSC. The experimental records were worked out in the form of excess heat capacity vs. T traces which were deconvoluted to single out the contribution of starch gelatinization from that of the decomposition of amylose-lipid complexes. The quantitative procedure used put into evidence that a third endothermic process would take place in the dough with a poor moisture content. DSC runs carried out with sealed pans (i.e., at constant moisture level) and open pans (from which some water was free to evaporate) allow simulation of two extreme conditions of a real baking process, namely that relevant to the central core and to superficial layer of a dough loaf, respectively. The extent of starch gelatinization occurred in these conditions was quantitatively assessed. These data were collected at various heating rates and used to define temperature-time-transformation(TTT) diagrams which are useful tools to predict the progress of baking for any given thermal history of the system. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Rheological properties of doughs with buckwheat and quinoa additives   总被引:1,自引:0,他引:1  
Rheological properties of doughs prepared from wheat flour with buckwheat and quinoa flour addition (2.5 mass %, 5.0 mass %, 7.5 mass %, and 10 mass %) were investigated using a farinograph and compared with those of standard dough (without addition of pseudocereals). The following characteristics were determined: water absorption capacity, water consumption, dough growth time, level of dough softening, dough stability, mechanical resistance, and dough elasticity. Dough stability showed a linear decrease with the increasing content of pseudocereals. Doughs containing quinoa flour were more stable than those with buckwheat flour addition. Dough growth time was reduced with increasing amounts of buckwheat flour but it was not affected in the case of quinoa flour addition. From the comparison of the studied characteristics it can be concluded that an addition of lower amounts of quinoa (up to 5.0 mass %) to wheat flour will not significantly impair rheological properties of the dough but provides for enhanced nutritional value of the prepared bakery products.  相似文献   

13.
A mixture design of experiment approach was followed to explore formulation effects on the technological properties of wheat flours optimized for industrial bread-making purposes. Ten different flour mixtures were investigated by means of near infrared spectroscopy (NIRS) to obtain information on flour performance in a critical phase such as dough leavening. For each mixture, a laboratory-scale bread making experiment was carried out according to a standardized recipe and the leavening phase of each dough sample was monitored by means of NIRS at different times. Parallel factor analysis (PARAFAC) was used to highlight the existence of differences among the mixtures on the basis of NIR spectrum variability with respect to the leavening time. Additionally, the relationship among the 3-way NIR dataset and some parameters measured on the baked bread loaves (dimensions, volume, weight) was investigated by means of the n-way extension of partial least squares regression (nPLS), in order to evaluate product properties from its leavening step and mixture formulation. The results give better insight on the relationships among wheat flour formulation and its performance in the leavening phase and as far as some properties of the final product are concerned, thus offering a way to monitor the leavening phase and give information on its influence on the final product properties.  相似文献   

14.
Exhaled breath is a potential noninvasive matrix to give new information about metabolic effects of diets. In this pilot study, non-targeted analysis of exhaled breath volatile organic compounds (VOCs) was made by comprehensive two-dimensional gas chromatography–mass spectrometry (GCxGC-MS) to explore compounds relating to whole grain (WG) diets. Nine healthy subjects participated in the dietary intervention with parallel crossover design, consisting of two high-fiber diets containing whole grain rye bread (WGR) or whole grain wheat bread (WGW) and 1-week control diets with refined wheat bread (WW) before both diet periods. Large interindividual differences were detected in the VOC composition. About 260 VOCs were detected from exhaled breath samples, in which 40 of the compounds were present in more than half of the samples. Various derivatives of benzoic acid and phenolic compounds, as well as some furanones existed in exhaled breath samples only after the WG diets, making them interesting compounds to study further.  相似文献   

15.
Wheat allergens are responsible for symptoms in 60–70% of bakers with work-related allergy, and knowledge, at the molecular level, of this disorder is progressively accumulating. The aim of the present study is to investigate the panel of wheat IgE positivity in allergic Italian bakers, evaluating a possible contribution of novel wheat allergens included in the water/salt soluble fraction. The water/salt-soluble wheat flour proteins from the Italian wheat cultivar Bolero were separated by using 1-DE and 2-DE gel electrophoresis. IgE-binding proteins were detected using the pooled sera of 26 wheat allergic bakers by immunoblotting and directly recognized in Coomassie stained gel. After a preparative electrophoretic step, two enriched fractions were furtherly separated in 2-DE allowing for detection, by Coomassie, of three different proteins in the range of 21–27 kDa that were recognized by the pooled baker’s IgE. Recovered spots were analyzed by nanoHPLC Chip tandem mass spectrometry (MS/MS). The immunodetected spots in 2D were subjected to mass spectrometry (MS) analysis identifying two new allergenic proteins: a glucose/ribitol dehydrogenase and a 16.9 kDa class I heat shock protein 1. Mass spectrometer testing of flour proteins of the wheat cultivars utilized by allergic bakers improves the identification of until now unknown occupational wheat allergens.  相似文献   

16.
Water states and displacements can be investigated with thermogravimetry (TG) either in its classical or in the Knudsen version (where standard pans are replaced with Knudsen cells). The case of wheat flour dough is considered in various steps of bread making, namely, mixing, proofing, baking, staling. The split of DTG signals into various components (gaussian functions) support the assumption that the overall dough water is partitioned into various fractions. Few comments are devoted to water displacements during freezing.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

17.
Brewer’s spent grain components (cellulose, hemicellulose and lignin) were fractionated in a two-step chemical pretreatment process using dilute sulfuric acid and sodium hydroxide solutions. The cellulose pulp produced was hydrolyzed with a cellulolytic complex, Celluclast 1.5 L, at 45 °C to convert the cellulose into glucose. Several conditions were examined: agitation speed (100, 150 and 200 rpm), enzyme loading (5, 25 and 45 FPU/g substrate), and substrate concentration (2, 5 and 8% w/v), according to a 23 full factorial design aiming to maximize the glucose yield. The obtained results were interpreted by analysis of variance and response surface methodology. The optimal conditions for enzymatic hydrolysis of brewer’s spent grain were identified as 100 rpm, 45 FPU/g and 2% w/v substrate. Under these conditions, a glucose yield of 93.1% and a cellulose conversion (into glucose and cellobiose) of 99.4% was achieved. The easiness of glucose release from BSG makes this substrate a raw material with great potential to be used in bioconversion processes.  相似文献   

18.
In this study, yeast, lactic acid bacteria, and acetic acid bacteria were isolated from traditional Chinese sourdough to enhance the organoleptic quality of whole wheat steamed bread. The Saccharomyces cerevisiae, Lactobacillus johnsonii, and Acetobacter pasteurianum showed superior fermentability and acid production capacity when compared with other strains from sourdough, which were mixed to produce the compound starter. It was found that the volume of whole wheat steamed bread leavened with compound starter increased by 12.8% when compared with that of the whole wheat steamed bread made by commercial dry yeast (DY-WB). A total of 38 volatile flavors were detected in the whole wheat steamed bread fermented by the compound starter (CS-WB), and the type of volatile flavors increased by 14 species when compared to the bread fermented by the dry yeast. In addition, some unique volatile flavor substances were detected in CS-WB, such as acetoin, 3-hydroxy-butanal, butyraldehyde, cuparene, etc. Moreover, the hardness and the chewiness of CS-WB decreased by 31.1 and 33.7% when compared with DY-WB, respectively, while the springiness increased by 10.8%. Overall, the formulated compound starter showed a desirable improvement in the whole wheat steamed bread and could be exploited as a new ingredient for steamed bread.  相似文献   

19.
Carotenoids are essential components in the human diet due to their positive functions in ocular and cognitive health. This study investigated composition of carotenoids in hairless canary seed (HCS) as a novel food and the effect of baking on carotenoids in bread and muffin made from HCS, wheat and corn. Three bread formulations made from wheat and HCS blends were evaluated and compared with control wheat bread. In addition, three low-fat muffin recipes prepared from HCS alone or in blends with corn were assessed. The fate of carotenoid compounds in breads and muffins was monitored after dry mixing, dough/batter formation and oven baking. Carotenoids in products were quantified using UPLC and their identification was confirmed based on LC-MS/MS. Hairless canary seed and corn were fairly rich in carotenoids with a total content of 7.6 and 12.9 µg/g, respectively, compared with wheat (1.3 µg/g). Nineteen carotenoid compounds were identified, with all-trans lutein being the principal carotenoid in HCS followed by lutein 3-O-linoleate, lutein 3-O-oleate and lutein di-linoleate. There were significant reductions in carotenoids in muffin and bread products. It appears that batter or dough preparation causes more reductions in carotenoids than oven baking, probably due to enzymatic oxidation and degradation. Muffin-making resulted in lower lutein reductions compared with the bread-making process. The results suggest that muffins made from hairless canary seed alone or in blends with corn could boost the daily intake of lutein and/or zeaxanthin.  相似文献   

20.
Edible insects, due to their high nutritional value, are a good choice for traditional food supplementation. The effects of partial replacement of wheat flour and butter with mealworm flour (Tenebrio molitor) on the quality attributes of shortcake biscuits were studied. The approximate composition was analyzed, along with the physical properties and color. Moreover, the antioxidant properties, starch digestibility, and glycemic index were determined in vitro. The protein and ash contents in biscuits supplemented with mealworm flour increased, while the carbohydrates content decreased. The increasing insect flour substitution decreased the lightness (L*) and yellowness (b*) but increased the redness (a*), total color difference (ΔE), and browning index (BI). The spread factor for the sample with the highest proportion of mealworm flour was significantly higher than the other biscuits. Furthermore, higher additions of mealworm flour increased the antioxidant activity of the biscuits and contributed to an increase in the content of slowly digested starch, with a decrease in the content of rapidly digested starch. Therefore, the results of the research are promising and indicate the possibility of using edible insects to enrich food by increasing the nutritional and health-promoting values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号