首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2017,29(9):2106-2113
In this article, electrochemical properties of CuO nanostructures based dopamine (DA) sensor was investigated. The morphology, structure, optical, and compositional properties of the CuO nanostructures were characterized by using SEM, XRD, UV‐Vis, and XPS techniques. The electrochemical properties were investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. The CV results indicate that biosensors based on CuO nanostructures exhibit a high selectivity and sensitivity of 0.1975 μA μM–1 toward DA and effectively avoids the interference of ascorbic acid (AA) and uric acid (UA). The obtained EIS spectra for CuO sensors were analysed using an electrical equivalent circuit to understand the bulk and surface response via the capacitive and resistive parameters. The EIS measurement also leads to the direct determination of parameters like series resistance and ion diffusion phenomena at electrode‐electrolyte interface. The experimental CV and EIS results along with their analysis will have a significant impact on understanding the mechanism of high sensitivity and selectivity performance of CuO based sensors. This study may also lay the basis for efficient characterization of biosensors by coupling both the CV and EIS characterization techniques.  相似文献   

2.
Electrochemical impedance spectroscopy of diluted solutions of Bisphenol A   总被引:1,自引:0,他引:1  
The electrochemical oxidation of bisphenol A was carried out using platinum, glassy carbon, titanium dioxide and polypyrrole modified working electrodes. Acetonitrile and water were evaluated as solvents; however, passivation could not be avoided due to the formation of insoluble oxidation products that adhere to the surface. The use of ultrasound did not show any improvement either. Finally, by using electrochemical impedance spectroscopy measurements at the open circuit potential it was possible to obtain a steady response of one of the components of the equivalent circuit proposed. This response is only dependent on the concentration of bisphenol A. At the same time it was demonstrated that the adsorption is a fundamental process that occurs more easily in water than in acetonitrile, this fact is reflected in the impedance spectra.  相似文献   

3.
This review presents recent advances concerning work with electronic tongues employing electroanalytical sensors. This new concept in the electroanalysis sensor field entails the use of chemical sensor arrays coupled with chemometric processing tools, as a mean to improve sensors performance. The revision is organized according to the electroanalytical technique used for transduction, namely: potentiometry, voltammetry/amperometry or electrochemical impedance. The significant use of biosensors, mainly enzyme‐based is also presented. Salient applications in real problem solving using electrochemical electronic tongues are commented.  相似文献   

4.
Anodic dissolution of copper in arginine and hydrogen peroxide-based medium suitable for chemical mechanical planarization slurry formulation was investigated using electrochemical impedance spectroscopy. Potentiodynamic polarization and impedance data were acquired for copper dissolving in hydrogen peroxide and arginine solution. Reaction mechanism analysis (RMA) was employed to determine the mechanistic pathway of copper dissolution. RMA analysis indicates that a stable passivating film does not form on the copper surface, and the direct dissolution of copper was also ruled out. A two-step mechanism involving cupric oxide as an intermediate species is proposed. The data were also fit to an electrical equivalent circuit to obtain insight into the variation of the parameters with the overpotential. The modeled data for the two-step mechanism captures the essential features of the impedance spectra at various overpotentials.  相似文献   

5.
A simple equivalent electrical circuit is used to obtain the physical parameters of electrical circuit elements from measured electrochemical impedance spectra. This model consists of four circuit elements with a clear physical meaning for each of the elements. Compared to complex models with multiple constant phase elements or Warburg impedances, our model is suitable for extracting physical values for important electrode parameters with low errors. The feasibility of the model was shown by investigating pure metal or polymer-coated electrodes. Here, gold electrodes were coated either with Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT : PSS), Polypyrrole:poly(styrenesulfonate) (PPy : PSS), or (PEDOT/PPy) : PSS by means of electropolymerization. The model could demonstrate the ionic-electronic differences such as the ion accessibility of the differently coated electrodes. To prove the correctness of the model, the obtained results were compared to the literature.  相似文献   

6.
电化学阻抗谱技术(EIS)在固体氧化物燃料电池(SOFC)中已获得广泛应用。在EIS分析过程中,研究者能够清楚地获得燃料电池内部因纯离子(电子)导电引起的欧姆电阻和因电化学过程、扩散作用引起的极化阻抗的大小,但是对于极化阻抗的构成缺乏进一步解析。本文选用传统的Ni-YSZ阳极支撑电池,通过改变测试温度、阳极运行气氛和阴极运行气氛,设计了一套完整的阻抗差异分析(ADIS)实验。并基于弛豫时间分布法(DRT)和阻抗差异分析法,系统地分析并解释了阻抗谱中各频率段对应阻抗的物理或(电)化学含义,将该类型电池阻抗谱以6个RQ并联电路予以拟合,为之后燃料电池性能稳定性的研究奠定基础。  相似文献   

7.
《Electroanalysis》2006,18(4):319-326
The unique chemical and physical properties of nanoparticles make them extremely suitable for designing new and improved sensing devices, especially electrochemical sensors and biosensors. Many kinds of nanoparticles, such as metal, oxide and semiconductor nanoparticles have been used for constructing electrochemical sensors and biosensors, and these nanoparticles play different roles in different sensing systems. The important functions provided by nanoparticles include the immobilization of biomolecules, the catalysis of electrochemical reactions, the enhancement of electron transfer between electrode surfaces and proteins, labeling of biomolecules and even acting as reactant. This minireview addresses recent advances in nanoparticle‐based electrochemical sensors and biosensors, and summarizes the main functions of nanoparticles in these sensor systems.  相似文献   

8.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) has been regarded as one of the ideal targets for the development of antiviral drugs. The currently used methods for the probing of Mpro activity and the screening of its inhibitors require the use of a double-labeled peptide substrate. In this work, we suggested that the label-free peptide substrate could induce the aggregation of AuNPs through the electrostatic interactions, and the cleavage of the peptide by the Mpro inhibited the aggregation of AuNPs. This fact allowed for the visual analysis of Mpro activity by observing the color change of the AuNPs suspension. Furthermore, the co-assembly of AuNPs and peptide was achieved on the peptide-covered electrode surface. Cleavage of the peptide substrate by the Mpro limited the formation of AuNPs/peptide assembles, thus allowing for the development of a simple and sensitive electrochemical method for Mpro detection in serum samples. The change of the electrochemical signal was easily monitored by electrochemical impedance spectroscopy (EIS). The detection limits of the colorimetric and electrochemical methods are 10 and 0.1 pM, respectively. This work should be valuable for the development of effective antiviral drugs and the design of novel optical and electrical biosensors.  相似文献   

9.
碳纳米管(CNTs)因具有独特的物理化学及电化学性质,如较大的比表面积、较强的电子转移能力和良好的吸附性能等而引起人们的广泛关注.碳纳米管可以通过物理吸附、静电或疏水作用等非共价结合方式或共价连接方式固定生物大分子(如蛋白质、DNA、抗体等),有效地促进生物大分子与电极间直接、快速的电子转移,可应用于多种电化学生物传感器中.碳纳米管本身在近红外光区具有独特的荧光和拉曼光谱,可以利用多种光谱手段对多种生物分子实现定量检测,因此近年来碳纳米管在光化学生物传感器中的应用也逐渐受到了研究者的重视.本文对碳纳米管在电化学和光化学生物传感器中的应用进行了简要综述和展望.  相似文献   

10.
《Analytical letters》2012,45(8):783-803
Recent trends and challenges in developing carbon nanotubes (CNT) based sensors and biosensors for the detection of organophosphate (OP) pesticides and other organic pollutants in water are reviewed. CNT have superior electrical, mechanical, chemical, and structural properties over conventional materials such as graphite. At the same time CNT based sensors and biosensors are more efficient compared to the existing traditional techniques such as high-performance liquid chromatography or gas chromatography, because they can provide rapid, sensitive, simple, and low-cost on-field detection. The measurement protocols can be based on enzymatic and non-enzymatic detection. The enzyme acetylcholinesterase (AChE) is used with CNT for fabricating ultrasensitive biosensors for OP detection involving different immobilization schemes such as adsorption, crosslinking, and layer-by-layer self-assembly. This protocol relies on measuring the degree of enzyme inhibition as means of OP quantification. The other enzyme used along with CNT for OP detection is organophosphate hydrolase (OPH) which hydrolyzes the OP into detectable species that can be measured by amperometric or potentiometric methods. Different forms of CNT electrode materials can be used for fabricating such electrodes such as pure CNT and composite CNT. Due to their large surface area and hydrophobicity, CNT have also been used for the extraction and non-enzymatic electrochemical detection of OP with very high efficiency. The application of CNT and their novel properties for the adsorption and electrochemical detection of OP compounds is discussed in detail.  相似文献   

11.
Electrochemistry of edge-plane pyrolytic graphite electrodes (EPPGEs) modified with Aldrich single-walled carbon nanotubes (SWCNTs) electro-decorated with metal (Ni, Fe and Co) and their oxides have been studied. The morphology and identity of the metallic dispersions were examined by scanning electron microscopy and energy-dispersive spectroscopy. We show that SWCNTs serve as efficient conducting carbon material for electronic communication between metal films and the underlying carbon electrode. By using cyclic voltammetry and electrochemical impedance spectroscopy (EIS) techniques, it is proved that both EPPGE-SWCNT-Ni and EPPGE-SWCNT-Fe exhibit comparable electrochemical response in buffered aqueous solution (pH 7.0) and towards electro-oxidation of hydrazine in Na2SO4 solution. The impedance spectra of these SWCNT-metal hybrids were complicated and follow electrical equivalent circuit model typical of adsorption-controlled charge transfer kinetics. Hydrazine impedance spectra exhibited inductive loop, characteristic of Faradaic current being governed by the occupation of an intermediate state. On the other hand, the EIS data obtained in a simple redox probe, [Fe(CN)6]3−/[Fe(CN)6]4−, showed that EPPGE-SWCNT and EPPGE-SWCNT-Ni followed electrical equivalent circuit models typical of partial charge transfer or adsorption-controlled kinetics with some resemblance to the behaviour of electrolyte–insulator–semiconductor sensors.  相似文献   

12.
电化学阻抗法研究环氧膜的吸水性能罗小雯,陈月辉,李善君,周伟舫(复旦大学高分子科学系,化学系,上海,200433)关键词电化学阻抗谱,环氧膜,交联密度,吸水性能水在环氧树脂膜中有较强的吸收和扩散能力,例如XD7342/TMAB于195℃固化24h,在...  相似文献   

13.
根据CR传输线模型和QR电路之间的关系,建立了拟合其初值的计算方法,借助Z-View软件,可求得各元件精确值.根据电容(Ci)和电阻(Ri)随特征频率(f*)的分布,推导了元件相对增量与恒相位角元件(Q)指数参数n的关系. 结果表明, 当n小于0.5时,Ci比Ri增加得更快,从新的角度说明了n的物理意义及其和界面脱层之间的关系.作为应用实例,拟合了不同特征的电化学阻抗谱,分析了有机涂层/金属腐蚀体系阻抗变化的具体过程,区分了点蚀和脱层因素对阻抗谱的影响,从高阻抗体系同时得到了与不同空隙率有关的涂层电容和电阻值,并根据涂层体系的不均匀特征探讨了模型结构的物理意义.  相似文献   

14.
MXenes are recently developed two-dimensional layered materials composed of early transition metal carbides and/or nitrides that provide unique characteristics for biosensor applications. This review presents the recent progress made on the usage and applications of MXenes in the field of electrochemical biosensors, including microfluidic biosensors and wearable microfluidic biosensors, and highlights the challenges with possible solutions and future needs. The multilayered configuration and high conductivity make these materials as an immobilization matrix for the biomolecule immobilization with activity retention and to be explored in the fabrication of electrochemical sensors, respectively. First, how the MXene nanocomposite as an electrode modifier affects the sensing performance of the electrochemical biosensors based on enzymes, aptamer/DNA, and immunoassays is well described. Second, recent developments in MXene nanocomposites as wearable biosensing platforms for the biomolecule detection are highlighted. This review pointed out the future concerns and directions for the use of MXene nanocomposites to fabricate advanced electrochemical biosensors with high sensitivity and selectivity. Specifically, possibilities for developing microfluidic electrochemical sensors and wearable electrochemical microfluidic sensors with integrated biomolecule detection are emphasized.  相似文献   

15.
Impedance measurements provide basic electrical properties and are used to analyze the characteristics of electrochemical materials for biomedical applications. The extracellular fluid (ECF) in microfluidic devices greatly affects the accuracy of impedance measurements of cells. When a single cell is placed in large amounts of ECF, the electric current mostly passes through the ECF, not the cell. Hence, this work presents a modeling method that is demonstrated in numerical and analytical solutions for eliminating the effect of ECF in coplanar impedance sensors. The proposed modeling method uses fundamental formulas of circuits that include the electrical parameters of the ECF, cytoplasm, and cell membrane. Equivalent circuit models for the coplanar impedance sensor are established to simulate the impedance as well as the measured ones for excitation frequencies in the range of 11–101 kHz. According to the calculation result using the proposed modeling method, the cytoplasm resistance, membrane capacitance, medium resistance, and medium capacitance of HeLa (human cervix adenocarcinoma) cell are 13.5 kΩ, 122.6 pF, 27.9 kΩ, and 337.7 pF, respectively. Moreover, the electric current distribution in the coplanar impedance sensor is investigated using finite element method (FEM) simulation software. The variation in the impedance during measurements with the simultaneous application of an alternating‐current (AC) voltage amplitude of 0.4 Vpp in the fluid volume range of 9–144 µL is also studied.  相似文献   

16.
黎振华  诸颖  陈静  宋世平 《应用化学》2022,39(5):736-748
电化学生物传感器具有灵敏度高、便携性好、响应快速和易于集成等优点,在临床检测方面有很大应用潜力,并在可穿戴健康监测领域得到了快速发展。但在实际临床生物样本检测中,非靶标生物物质会在电极表面产生非特异性吸附(即生物污染),影响了电化学生物传感器的性能。因此,构建具有防污染能力的传感界面(抗污界面),防止非靶标物质吸附到电极表面,对于扩大电化学生物传感器的实际应用范围,实现在复杂生物样本中的检测至关重要。本文概述了物理、化学和生物抗污电极界面的构建及其在临床相关生物标志物检测中的应用,为电化学生物传感器实际应用性能的提升提供技术参考,并通过对界面抗污原理和存在问题的探讨,对抗污界面发展前景和未来趋势予以展望。  相似文献   

17.
The aim of this review is to present the contributions to the development of electrochemical sensors and biosensors based on polyphenazine or polytriphenylmethane redox polymers together with carbon nanotubes (CNT) during recent years. Phenazine polymers have been widely used in analytical applications due to their inherent charge transport properties and electrocatalytic effects. At the same time, since the first report on a CNT-based sensor, their application in the electroanalytical chemistry field has demonstrated that the unique structure and properties of CNT are ideal for the design of electrochemical (bio)sensors. We describe here that the specific combination of phenazine/triphenylmethane polymers with CNT leads to an improved performance of the resulting sensing devices, because of their complementary electrical, electrochemical and mechanical properties, and also due to synergistic effects. The preparation of polymer/CNT modified electrodes will be presented together with their electrochemical and surface characterization, with emphasis on the contribution of each component on the overall properties of the modified electrodes. Their importance in analytical chemistry is demonstrated by the numerous applications based on polymer/CNT-driven electrocatalytic effects, and their analytical performance as (bio) sensors is discussed.  相似文献   

18.
近年来,污水流行病学(wastewater-based epidemiology, WBE)已被证明是用来监测社区毒品滥用和公共健康的一种有效评估方法,该方法通过定量分析指定社区污水回收站中污水的药物残留或者代谢物来反推社区中人们对毒品的消耗量并结合指定社区的人口数量对其进行归一化处理. 电化学生物传感器具有响应时间快、成本低、分析样品需求量小、数据分辨率高以及能够现场快速测试等特点,已被广泛应用于疾病快速诊断、环境污染监测、食品安全以及毒品检测等领域. 液相色谱-质谱联用是分析污水中的毒品及其代谢物的主要方法,但随着传感技术尤其是电化学传感器近来的快速发展,也开始被用于研究污水传染病学并可实现现场快速测量. 本文综述了电化学生物传感器在污水中无机污染物(如重金属)、有机污染物(如农药、毒品)、生物分子(如 DNA)以及细菌等微生物分析中的最新进展,同时还论述了目前电化学传感器技术在污水流行病学领域的应用和未来所面临的主要挑战.  相似文献   

19.
DNA电化学传感器灵敏度高、选择性好、分析时间短和检测成本低,极大地推动了生物传感器的发展. 结合蛋白质酶、功能核酸酶的催化效率高与特异性好,可提高检测灵敏度和选择性. 本文评述了酶放大DNA电化学传感器的研究进展,并分析现存问题,展望发展趋势.  相似文献   

20.
《Electroanalysis》2005,17(7):549-555
Carbon film disk electrodes with Nafion coatings have been characterized by electrochemical impedance spectroscopy (EIS) with a view to a better understanding of their advantages and limitations in electroanalysis, particularly in anodic stripping voltammetry of metal ions. After initial examination by cyclic voltammetry, spectra were recorded over the full potential range in acetate buffer solution at the bare electrodes, electrodes electrochemically pretreated in acid solution, and Nafion‐coated pretreated electrodes in the presence and absence of dissolved oxygen. EIS equivalent circuit analysis clearly demonstrated the changes between these electrode assemblies. In order to simulate anodic stripping voltammetry conditions, spectra were also obtained in the presence of cadmium and lead ions in solution at Nafion‐coated electrodes, both after metal ion deposition and following re‐oxidation. Permanent changes to the structure of the Nafion film occurred, which has implications for use of these electrode assemblies in anodic stripping voltammetry at relatively high trace metal ion concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号