首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fabrication of a gold microelectrode modified with iridium oxide film (IrOx) and its use as tip with a dual function in SECM experiments is reported. The defective structure of the coating onto the microelectrode surface was used as strategy to combine the advantages of both amperometric (for current‐distance determination) and potentiometric (for pH sensing) SECM operation modes. Approach curves, using oxygen and hexaammineruthenium(III) as redox mediators, were obtained without significant loss of the performance and reproducibility of the potentiometric pH response. This allowed the precise positioning of the proposed tip above a substrate in SECM experiments and, subsequently, to monitor pH at the substrate surface. The IrOx modified microelectrode was applied successfully in SECM experiments involving the local proton consumption during the nitrate reduction at a copper cathode surface.  相似文献   

2.
BaTiO3 nanofibers (BT NFs), prepared by electrospinning, were used as a filler for electrospun poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) nanocomposite mats. The phase structure and the effect of poling conditions on the piezoelectric properties of PVDF-TrFE/BT nanocomposites were investigated. The results showed an improved degree of crystallinity (78.6%) and a high β-crystal phase (up to 98.3%) in all electrospun samples, independent of the nanofiber content. The two-step poling method, applying electric fields of opposite polarity, led to significantly improved piezoelectric constants d33 (−31.7 pC N−1), strongly dependent on the added BaTiO3 nanofibers. The inclusion of piezoelectric ceramic nanofibers into a polymer matrix, easily carried out by means of electrospinning, followed by an ad hoc optimized poling treatment, allowed to develop flexible materials with enhanced piezoelectric properties, potentially exploitable in innovative conversion systems used in wearable and sensing devices.  相似文献   

3.
基于氧荧光猝灭速率法的生化需氧量检测   总被引:1,自引:0,他引:1  
利用氧荧光猝灭速率的方法,结合自行构建的BOD光纤传感装置进行海水中生化需氧量(BOD)含量检测。考察了四种筛选的海洋耗氧菌种在四甲基硅氧烷(TMOS)、二甲基二甲氧基硅烷(Di Me-DMOS)和聚乙烯醇(PVA)包埋固定情况下,对不同浓度的葡萄糖-谷氨酸(GGA)标准溶液的荧光响应情况。BOD敏感膜的荧光响应在0·2~30mg/L浓度范围内呈良好的线性关系,对2mg/L标准溶液测定的相对标准偏差为2·5%(n=6),响应时间(t95%)为4·0min,BOD敏感膜使用寿命大于12个月。实际海水样品检测表明,利用BOD敏感膜检测得到的结果与国标BOD5方法之间存在较好的一致性。  相似文献   

4.
This paper focuses on effects of protection with a silicone resin to develop a fiber-optic oxygen sensor with long-term stability and durability in harsh underground environments. Ruthenium (II) complexes were used as oxygen-sensing compounds. A uniform composite film composed of silicone resin and the Ru complex was prepared with spin coating technique. A comparison of dissolved-oxygen (DO) sensitivity between the composite film and a Ru complex film was made by exposing to hot water (80 °C). The result of the accelerated degradation test showed that sensitivity of the Ru complex film was stable; meanwhile that of the composite film increased with exposure time in a short period. In order to improve stability, the Ru complex film overcoated with silicone resin was prepared. Differences in sensitivity for saturated DO (8.5 ppm) between with and without the silicone resin overcoating on the Ru complex film were investigated by exposing to the hot water and simulated underground water. These results revealed that the sensitivities and response times of the overcoated films were stable and slow, respectively, compared to those of non-overcoated films. Then, optodes were evaluated for effects of the overcoating on sensing properties by exposing to 100 vol.% oxygen gas. The experiment showed that: (1) the response time was significantly influenced by the thickness of the overcoating; and (2) response speed of the overcoated optode was slow by a factor of about 35 compared to that of the non-overcoated. We concluded that the overcoating was effective in the application to mid- and long-term oxygen monitoring in the harsh environments.  相似文献   

5.
The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were fabricated by one-step electrospinning and ion-imprinting methods and their application as adsorbents for metal ions was also investigated.The resulting chitosan nanofiber mats were characterized by scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS)and thermal gravimetric analysis(TGA).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were used as adsorbents for the removal of Pb(Ⅱ)ions from aqueous or acid solutions.The effects of p H values,contact time,content of crosslinker(glutaraldehyde)on Pb(Ⅱ)ions adsorption were studied.The results indicated that the Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had the highest adsorption capacity of 110.0 mg/g at p H 7.The kinetic study demonstrated that the adsorption of Pb(Ⅱ)ions followed the pseudo-second-order model.The equilibrium isotherm data showed that the Langmuir model was the most suitable for predicting the adsorption isotherm of the studied system.The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats had good adsorption selectivity,which illustrates the equilibrium adsorption capacity in the order of Pb(Ⅱ)Cu(Ⅱ)Zn(Ⅱ)Cd(Ⅱ)Ni(Ⅱ).The Pb(Ⅱ)ion-imprinting electrospun crosslinked chitosan nanofiber mats were stable and had good reuse ability.  相似文献   

6.
《中国化学快报》2022,33(11):4798-4802
A dual emission sensing film has been prepared for colorimetric temperature sensing using CsPbBr3 perovskite nanocrystals (CsPbBr3 NCs) and manganese doped potassium fluorosilicate (K2SiF6:Mn4+, KSF) encapsulated in polystyrene by a microencapsulation strategy. The CsPbBr3-KSF-PS film shows good temperature sensing response from 30 °C to 70 °C, with a relative temperature sensitivity (Sr) up to 10.31% °C?1 at 45 °C. Meanwhile, the film maintains more than 95% intensity after 6 heating-cooling cycles and keeps its fluorescence characteristics after 3 months. The film can be used to monitor temperature change by naked eye under a UV lamp. In particular, the temperature discoloration point of the sensing film can be controlled by the ratio change of CsPbBr3:KSF to expand its applications. The study of the CsPbBr3-KSF-PS sensing mechanism in this work is helpful to provide effective strategies for the design of reliable, high sensitivity and stable temperature sensing system using CsPbBr3 NCs.  相似文献   

7.

This study has concerned the development of polymer composite electrolytes based on poly(vinyl butyral) (PVB) reinforced with calcinated Li/titania (CLT) for use as an electrolyte in electrochemical devices. The primary aim of this work was to verify our concept of applying CLT-based fillers in a form of nano-backbone to enhance the performance of a solid electrolyte system. To introduce the network of CLT into the PVB matrix, gelatin was used as a sacrificial polymer matrix for the implementation of in situ sol–gel reactions. The gelatin/Li/titania nanofiber films with various lithium perchlorate (LiClO4) and titanium isopropoxide proportions were initially fabricated via electrospinning, and ionic conductivities of electrospun nanofibers were then examined at 25 °C. In this regard, the highest ionic conductivity of 2.55 × 10−6 S/cm was achieved when 10 wt% and 7.5 wt% loadings of LiClO4 and titania precursor were used, respectively. The nanofiber film was then calcined at 400 °C to remove gelatin, and the obtained CLT film was then re-dispersed in solvated PVB-lithium bis(trifluoromethanesulfonyl)imide (PVB-LiTFSI) solution before casting to obtain reinforced composite solid electrolyte film. The reinforced composite PVB polymer electrolyte film shows high ionic conductivity of 2.22 × 10−4 S/cm with a wider electrochemical stability window in comparison to the one without nanofillers.

  相似文献   

8.
《中国化学快报》2020,31(8):2145-2149
An optical fiber dual Fabry-Pérot interferometric carbon monoxide gas sensor based on PANI/Co3O4/GO (PCG) sensing membrane coated on the end face of the optical fiber is proposed and fabricated. One end face of photonic crystal fiber (PCF) without cut-off wavelength is fused with a single-mode fiber (SMF), and the other end face of the PCF is coated with PCG sensing membrane. The collapsed layer formed during the air hole fusion of PCF is used as the first reflector, the interface between PCF and sensing membrane is used as the second reflector, and the interface between the sensing membrane and the air is used as the third reflector, thus the dual Fabry-Pérot structure sensor is formed. The results show that the sensor has excellent sensitivity and selectivity to carbon monoxide. With the increasing concentration of carbon monoxide gas in the range of 0−60 ppm, the intensity of interference spectrum decreases. The sensitivity of the sensor is 0.3473 dB m/ppm, and its linearity is good. The response time and recovery time are 68 s and 106 s, respectively. The sensor has the advantages of the compact size, low cost, high sensitivity, strong selectivity and simple structure. It is suitable for the sensing detection of low concentration carbon monoxide gas.  相似文献   

9.
为了研制药物缓释效果优良的薄膜材料,利用静电纺丝设备研制不同比重的魔芋葡甘露聚糖/聚乙烯醇纳米纤维膜,并通过扫描电镜、傅里叶变换红外光谱和示差扫描量热法表征纳米纤维膜的结构和性能,结合体外实验和数学模型研究其缓释行为.结果显示当魔芋葡甘露聚糖含量占纳米纤维膜总质量约76%时,纳米纤维膜中微纤丝粗细最均匀且结点较少,纳米纤维膜中魔芋葡甘聚糖和聚乙烯醇之间存在明显的相互作用,含有5-氨基水杨酸的纳米纤维膜在pH=7.4 PBS磷酸盐缓冲液中25 h的累积释放量大约为45%,显示出良好的药物缓释效果,其缓释行为与Higuchi模型具有较高的拟合度.研究表明利用静电纺丝设备研制的魔芋葡甘聚糖/聚乙烯醇纳米纤维膜可以为药物缓释载体的开发提供理论依据.  相似文献   

10.
Chitosan–poly(acrylic acid) (CS–PAA) composite membrane with a 3D network nano‐structure was prepared using an electrostatic interaction process by adding succinic acid as a branch promoter. Variations of the final solution pH values, concentration of CS, and PAA/CS volume ratio were examined systematically for their effects on average fiber diameter size, intensity of surface charge, and tendency of network formation. It was found that nanofiber size was affected by the mixing ratio of PAA and CS, the concentration of CS, and the final pH of the CS–PAA solution. The smallest diameter size distribution of the scaffold can be obtained when the PAA/CS ratio is in the range of 2:1–1:2 in a pH 3 environment. Negative charge nanofibers prepared using PAA and CS in a ratio of 2:1 in pH 3 environments had an average diameter of 215 nm. The formation of the interconnecting 3D self‐organized network structure can be built up with limited parasitic branching by crystallized succinic acid. The gas response to ammonia, including sensitivity and response time, was evaluated using impedance spectroscopy at room temperature. The results of sensing experiments indicate that the sensitivity of nanofibrous membrane (NM)‐coated sensors was eight times higher than that of continuous film‐coated sensors. NM‐coated sensors exhibited high sensitivity towards a low concentration of ammonia, as low as 50 ppm at a relative humidity of 45%. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
This letter reports the enhancing effects of a nanofiber network structure on stimuli-responsive wettability switching. Thermoresponsive coatings composed of nanofibers were prepared by electrospinning from thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAAm). The nanofiber coatings showed a large amplitude of thermoresponsive change in the wettability from hydrophilic to hydrophobic states compared to a smooth cast film. In particular, the combination of the surface chemistry and unique topology of the electrospun nanofiber coatings enables a transition from the Wenzel state to the metastable Cassie-Baxter state with an increase in temperature and consequently an enhanced amplitude of change in the water contact angles: the apparent contact angle differences between 25 and 50 °C are Δθ*(25-50?°C?)= 108 and 10° for the nanofiber coatings with a diameter of 830 nm and a smooth cast film, respectively. The fabrication of the 3D nanofiber network structure by electrospinning from stimuli-responsive materials is a promising option for highly responsive surfaces in wettability.  相似文献   

12.
This is for the first time that application of complex nanostructure is reported as pH indicator in PVC matrix. This new optical pH sensor was constructed based on incorporation of ZnLI2 complex nanostructure in PVC matrix. The synthesized nanostructure ZnLI2 complex was characterized by SEM and XRD technique. The membrane solution was speared on the glass plate to provide thin film and the membrane surface morphology was investigated via field emission scanning microscope (FE‐SEM) technique. Central composite design (CCD) combined with desirability function (DF) was applied to find the best experimental composition of membrane providing the highest absorbance. These conditions were found in correspondence with 3 mg of pH indicator, 3 mg of ionic additive and 1.5 mg/mg of DBP/PVC weight ratio. Under optimum conditions, the proposed pH sensor has two linear working ranges of 4 ‐ 8 at 393 nm (R2 = 0.9897) and 5 ‐ 8 (R2 = 0.9982) at 570 nm with response time of 4 min. The pKa of proposed pH optical sensor was calculated through three methods that found to be 5.63. The present optical sensor shows stability after 2 months without any significant divergence in response properties (less than 5% RSD). Furthermore, current pH optode was exhibited good repeatability (RSD = 1.14%) as well as reproducibility (RSD = 4.06%). No significant variation was observed on sensor response with increasing the ionic strength in the range of 0.0–0.5 M of sodium chloride. All above features indicated that the proposed sensor can be successfully used for detection of pH in solutions with different ionic strength.  相似文献   

13.
Poly‐aniline (PAn) film can be oxidized by contacting oxygen in an electron‐transfer reaction and its redox state, for instance the open circuit potential and the dielectric constant, is quantitatively related to oxygen concentration. This feature may contribute to an improved application of dissolved oxygen (DO) detection with the combined optical and electrochemical sensor. In this paper, PAn is used as a sensing surface to detect DO by the combination sensor composed of electrochemistry and total internal reflection imaging ellipsometry (EC‐TIRIE). Results demonstrate that both optical and electrical signals show a logarithmic correlation with DO concentration (0–20 ppm). Compared with the results obtained only with the gold surface, both the optical and electrical signals of the EC‐TIRIE sensor for DO detection are amplified with the PAn modified gold surface.  相似文献   

14.
Nitrogen‐doped hollow cobalt oxide nanofibers (Co3O4 NFs) with both glucose catalytic activity and pH sensitivity were fabricated through core‐sheath electrospinning technique, followed by calcination. The as‐developed nitrogen‐doped hollow Co3O4 NFs were thoroughly characterized using various techniques, and then employed to fabricate a dual electrochemical sensor for both pH sensing and glucose sensing. The pH sensitivity of the developed nitrogen‐doped hollow Co3O4 NFs demonstrated a Nernst constant of 12.9–15.9 mV/pH in the pH range of 3.0~9.0 and 6.8–10.7 mV/pH in the pH range of 9.0~13.0, respectively. The developed hollow cobalt oxides nanofibers sensor also possesses glucose sensitivity of 87.67 μA mM?1 cm?2, the limit of detection of 0.38 μM (S/N=3), and an acceptable selectivity against several common interferents in non‐enzymatic glucose determination. High accuracy for monitoring glucose in human serum sample was also demonstrated. These features indicate that the as‐synthesized nitrogen‐doped hollow cobalt oxides nanofibers hold great potential in the development of a unique dual sensor for both solid‐state pH sensing and superior non‐enzymatic glucose sensing.  相似文献   

15.
A fiber-optic sensor based on fluorescence quenching was designed for dissolved oxygen (DO) detection. The fluorinated xerogel-based sensing film of the present sensor was prepared from 3, 3, 3-trifluoropropyltrimethoxysilane (TFP–TriMOS). Oxygen-sensitive fluorophores of tris (2, 2′- bipyridine) ruthenium (II) (Ru(bpy)32+) were immobilized in the sensing film and the emission fluorescence was quenched by dissolved oxygen. In the sensor fabrication, a two-fiber probe was employed to obtain the best fluorescence collection efficiency and the sensing film was attached to the probe end. Scanning electron microscope (SEM), UV–Vis absorption spectroscopy (UV–Vis) and fourier transform infrared spectroscopy (FTIR) measurements have been used to characterize the sensing film. The sensor sensitivity is quantified by I deoxy/I oxy, where I deoxy and I oxy represented the detected fluorescence intensities in fully deoxygenated and fully oxygenated environments, respectively. Compared with tetramethoxysilane (TMOS) and methyltriethoxysilane (MTMS)-derived sensing films, TFP–TriMOS-based sensor exhibited excellent performances in dissolved oxygen detection with short response time of 4 s, low limit of detection (LOD) of 0.04 ppm (R.S.D. = 2.5%), linear Stern–Volmer calibration plot from 0 to 40 ppm and long-term stability during the past 10 months. The reasons for the preferable performances of TFP–TriMOS-based sensing film were discussed.  相似文献   

16.
The development of next-generation adsorption, separation, and filtration materials is growing with an increased research focus on polymer composites. In this study, a novel blend of chitosan (CS) and polyethylene oxide (PEO) nanofiber mats was electrospun on titanium (Ti)-coated polyethylene terephthalate (PET) track-etched membranes (TMs) with after-treatment by glutaraldehyde in the vapor phase for enhancing the nanofiber stability by crosslinking. The prepared composite, titanium-coated track-etched nanofiber membrane (TTM-CPnf) was characterized by Fourier transform infra-red (FTIR), water contact angle, and scanning electron microscopy (SEM) analyses. Smooth and uniform CS nanofibers with an average fiber diameter of 156.55 nm were produced from a 70/30 CS/PEO blend solution prepared from 92 wt. % acetic acid and electrospun at 15 cm needle to collector distance with 0.5 mL/h flow rate and an applied voltage of 30 kV on the TTM-CPnf. Short (15 min) and long (72 h)-term solubility tests showed that after 3 h, crosslinked nanofibers were stable in acidic (pH = 3), basic (pH = 13), and neutral (pH = 7) solutions. The crosslinked TTM-CPnf material was biocompatible based on the low mortality of freshwater crustaceans Daphnia magna. The composite membranes comprised of electrospun nanofiber and TMs proved to be biocompatible and may thus be suitable for diverse applications such as dual adsorption–filtration systems in water treatment.  相似文献   

17.
Wu L  McIntosh M  Zhang X  Ju H 《Talanta》2007,74(3):387-392
Thionine had strong interaction with carbon nanofiber (CNF) and was used in the non-covalent functionalization of carbon nanofiber for the preparation of stable thionine-CNF nanocomposite with good dispersion. With a simple one-step electrochemical polymerization of thionine-CNF nanocomposite and alcohol oxidase (AOD), a stable poly(thionine)-CNF/AOD biocomposite film was formed on electrode surface. Based on the excellent catalytic activity of the biocomposite film toward reduction of dissolved oxygen, a sensitive ethanol biosensor was proposed. The ethanol biosensor could monitor ethanol ranging from 2.0 to 252 μM with a detection limit of 1.7 μM. It displayed a rapid response, an expanded linear response range as well as excellent reproducibility and stability. The combination of catalytic activity of CNF and the promising feature of the biocomposite with one-step non-manual technique favored the sensitive determination of ethanol with improved analytical capabilities.  相似文献   

18.
Liposome-Based Optochemical Nanosensors   总被引:2,自引:0,他引:2  
 This paper describes the optochemical pH and oxygen sensing properties of dye-encapsulating and fluorescently labeled nano-sized unilamellar liposomes. To prepare the oxygen sensitive liposomes a lipid mixture consisting of dimyristoylphospatidylcholine, cholesterol, and dihexadecyl phosphate (molar ratio 5:4:1) all dissolved in dry isopropyl alcohol is injected into a sensing dye solution. The mixture is then sonicated with a liposome maker to form dye-encapsulating liposomes. A lipid mixture consisting of dimyristoylphospatidylcholine, N-(fluorescein-5-thiocarbamoyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine triethylammonium salt (fluorescein DHPE), cholesterol, and dihexadecyl phosphate (molar ratio 20:1:16:4) is used to prepare the pH sensitive liposomes by the same sonication technique. Fluorescein labeled DHPE phospholipids are combined with DMPC phospholipids in a 1:20 ratio to incorporate the sensing dye directly into the bilayer membrane, virtually eliminating any instability due to dye leakage. Oxygen sensing liposomes are created by encapsulating the oxygen sensitive ruthenium tris(1,10)-phenanthroline complex [Ru(phen)3]. The dye is believed to exist both in free solution within the liposome, and as an adherent on the inner membrane of the liposome. High uniformity of the liposomes is realized by extruding them back and forth through a 100 nm pore-size polycarbonate membrane. TEM images of the liposomes, stained with uranyl acetate, show that the liposomes are unilamellar, spherical in shape, maintain high structural integrity, and average 70 nm in diameter. The liposomes show high stability with respect to dye leaking at room temperature for 8 days, and high photostability when exposed to the excitation light. Individual liposomes are used to monitor the pH and oxygen level in their vicinity during the enzymatic oxidation of glucose by the enzyme glucose oxidase. The newly prepared environmentally sensitive liposomes can be applied for non-invasive pH and oxygen determination in tissues and single biological cells. Received June 8, 1998. Revision November 10, 1998.  相似文献   

19.

Bioactive glasses (BGs) have gained great attention owing to their versatile biological properties. Combining BG nanoparticles (BGNPs) with polymeric nanofibers produced nanocomposites of great performance in various biomedical applications especially in regenerative medicine. In this study, a novel nanocomposite nanofibrous system was developed and optimized from cellulose acetate (CA) electrospun nanofibers containing different concentrations of BGNPs. Morphology, IR and elemental analysis of the prepared electrospun nanofibers were determined using SEM, FT-IR and EDX respectively. Electrical conductivity and viscosity were also studied. Antibacterial properties were then investigated using agar well diffusion method. Moreover, biological wound healing capabilities for the prepared nanofiber dressing were assessed using in-vivo diabetic rat model with induced wounds. The fully characterized CA electrospun uniform nanofiber (100–200 nm) with incorporated BGNPs exhibited broad range of antimicrobial activity against gram negative and positive bacteria. The BGNP loaded CA nanofiber accelerated wound closure efficiently by the 10th day. The remaining wound areas for treated rats were 95.7?±?1.8, 36.4?±?3.2, 6.3?±?1.5 and 0.8?±?0.9 on 1st, 5th, 10th and 15th days respectively. Therefore, the newly prepared BGNP CA nanocomposite nanofiber could be used as a promising antibacterial and wound healing dressing for rapid and efficient recovery.

  相似文献   

20.
Collagen functionalized thermoplastic polyurethane nanofibers (TPU/collagen) were successfully produced by coaxial electrospinning technique with a goal to develop biomedical scaffold. A series of tests were conducted to characterize the compound nanofiber and its membrane in this study. Surface morphology and interior structure of the ultrafine fibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM), whereas the fiber diameter distribution was also measured. The crosslinked membranes were also characterized by SEM. Porosities of different kinds of electrospun mats were determined. The surface chemistry and chemical composition of collagen/TPU coaxial nanofibrous membranes were verified by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectrometry (FTIR). Mechanical measurements were carried out by applying tensile test loads to samples which were prepared from electrospun ultra fine non-woven fiber mats. The coaxial electrospun nanofibers were further investigated as a promising scaffold for PIECs culture. The results demonstrated that coaxial electrospun composite nanofibers had the characters of native extracellular matrix and may be used effectively as an alternative material for tissue engineering and functional biomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号