首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sulfonylurea herbicides can lead to serious weed resistance due to their long degradation times and large-scale applications. This is especially true for chlorsulfuron, a widely used acetolactate synthase inhibitor used around the world. Its persistence in soil often affects the growth of crop seedlings in the following crop rotation, and leads to serious environmental pollution all over the world. Our research goal is to obtain chlorsulfuron-derived herbicides with high herbicidal activities, fast degradation times, as well as good crop safety. On account of the slow natural degradation of chlorsulfuron in alkaline soil, based on the previously reported results in acidic soil, the degradation behaviours of 5-substituted chlorsulfuron analogues (L101–L107) were investigated in a soil with pH 8.39. The experimental data indicated that 5-substituted chlorsulfuron compounds could accelerate degradation rates in alkaline soil, and thus, highlighted the potential for rational controllable degradation in soil. The degradation rates of these chlorsulfuron derivatives were accelerated by 1.84–77.22-fold, compared to chlorsulfuron, and exhibited excellent crop safety in wheat and corn (through pre-emergence treatment). In combination with bioassay activities, acidic and alkaline soil degradation, and crop safety, it was concluded that compounds L104 and L107, with ethyl or methyl groups, are potential green sulfonylurea herbicides for pre-emergence treatment on wheat and corn. This paper provides a reference for the further design of new sulfonylurea herbicides with high herbicidal activity, fast, controllable degradation rates, and high crop safety.  相似文献   

2.
Chlrosulfuron, a classical sulfonylurea herbicide that exhibits good safety for wheat but causes a certain degree of damage to subsequent corn in a wheat–corn rotation mode, has been suspended field application in China since 2014. Our previous study found that diethylamino-substituted chlorsulfuron derivatives accelerated the degradation rate in soil. In order to obtain sulfonylurea herbicides with good crop safety for both wheat and corn, while maintaining high herbicidal activities, a series of pyrimidine- and triazine-based diethylamino-substituted chlorsulfuron derivatives (W102–W111) were systematically evaluated. The structures of the synthesized compounds were confirmed with 1H NMR, 13C NMR, and HRMS. The preliminary biological assay results indicate that the 4,6-disubstituted pyrimidine and triazine derivatives could maintain high herbicidal activity. It was found that the synthesized compounds could accelerate degradation rates, both in acidic and alkaline soil. Especially, in alkaline soil, the degradation rate of the target compounds accelerated more than 22-fold compared to chlorsulfuron. Moreover, most chlorsulfuron analogs exhibited good crop safety for both wheat and corn at high dosages. This study provided a reference for the further design of new sulfonylurea herbicides with high herbicidal activity, fast degradation rates, and high crop safety.  相似文献   

3.
Structural modification on the 5th position of the benzene ring in chlorsulfuron was proved to be an efficient practice to accelerate its degradation in alkaline soil which can resolve the disadvantages of traditional sulfonylurea herbicides. Meanwhile, it could retain high biological activity.  相似文献   

4.
A method based on liquid extraction followed by sample enrichment on reversed-phase solid-phase extraction was developed for the extraction of five degradation products of four sulfonylurea herbicides (chlorsulfuron, metsulfuron-methyl, thifensulfuron-methyl and tribenuron-methyl) from soil. The compounds have been quantified by LC-UV and identified by tandem LC-MS with electrospray ionization or atmospheric pressure chemical ionization. The limits of detection for the five compounds were between 10 and 50 micrograms kg-1. The method has been applied to the extraction of soil samples after microbial degradation of sulfonylurea herbicides.  相似文献   

5.
Three novel series of 5-substituted sulfonylurea derivatives were designed and synthesized via introducing a triazole or oxadiazole ring at the 5th position of the benzene ring in classical sulfonylurea herbicides. All the target compounds were confirmed by means of 1H nuclear magnetic resonance(NMR), 13C NMR and elemental analysis. The bioassay results show that the target compounds containing an oxadiazole ring at the 5th position display moderate to excellent herbicidal activities against Brassica campestris and Amaranthus retroflexus under soil treatment. Especially, compounds zdk20, zdk21 and zdk22 possess 98.6%, 96.5% and 94.5% inhibition rates, respectively, against Amaranthus retroflexus at a concentration of 75 g/ha(1 ha=1×104 m2) under soil treatment, which approach to those of the commercial herbicide chlorsulfuron.  相似文献   

6.
The study of soil degradation behaviors of sulfonylurea herbicides in relation to their different structural attributes is utmost important for us to comprehend the development of new eco‐friendly herbicides. It is postulated that the structural modification of the chemical structures could influence their degradation rates in soil. Nine devised structures were synthesized to study their herbicidal activity as well as their soil degradation behaviors respectively. The novel compounds I‐3 – I‐7 were characterized by UV, 1H NMR and 13C NMR, MS and EA. Bioassays indicated that most of target compounds displayed superior herbicidal activities in comparison with Chlorsulfuron. Soil degradation results further confirmed our previous assumption that the introduction of electron‐donating substituents at 5th position of the benzene ring distinctly increased their degradation rates, among which dimethylamino and diethylamino groups can adjust the degradation rate to a more favorable status.  相似文献   

7.
水稻是我国重要的粮食作物,但杂草对水稻的产量和品质产生了严重影响。 化学防除是治理水稻田杂草最有效的途径。 文中设计合成了苯环2,6-取代和2,5-取代两个系列磺酰脲类化合物,并通过核磁共振波谱仪(NMR)和高分辨质谱仪(HRMS)等对其进行了结构表征。 通过水稻田除草活性和安全性测试发现化合物在水稻田中具有较好的除草活性,尤其是化合物10a对水稻田中的主要杂草稗草和醴肠除草活性(目测初筛防效大于90%)优于对照药醚苯磺隆和氯磺隆,安全性与之相当。  相似文献   

8.
李迪  张瑞琪  王铁峰  苏萍  杨屹 《色谱》2019,37(3):259-264
采用溶胶-凝胶法制备表面修饰了十八烷基三甲基溴化铵的磁性粒子作为萃取剂,研制了一种在线磁性固相萃取(on-line MSPE)装置,建立了on-line MSPE与高效液相色谱联用测定水样中两种磺酰脲类农药(氯磺隆、苄嘧磺隆)的方法。实验优化了在线磁性固相萃取条件并进行方法学考察,证明该方法具有良好的线性关系(两种目标物的线性相关系数均≥ 0.9997)和较低的检出限(两种目标物的检出限分别为0.32和1.12 μg/L)。将此法用于3种环境水样中两种磺酰脲类农药的检测,水样中均检出氯磺隆,均未检出苄嘧磺隆。两种目标物加标回收率为70.0%~113.4%。该方法高效、简便,在分离富集环境水样中磺酰脲类农药方面有一定的应用前景。  相似文献   

9.
To develop novel sulfonylurea herbicides, a series of chlorsulfuron derivatives was designed and synthesized through introducing tetrahydrophthalimide substructure taken from protoporphyrinogen IX oxidase(PPO) inhibitors onto the critical 5-position of the classical benzene ring. The structures of title compounds were confirmed by infrared spectroscopy, ultraviolet spectroscopy, 1H and 13C NMR spectrometry, mass spectrometry and elemental analysis. In addition, the crystal structure of compound II-5 was further determined by X-ray diffraction analysis. Bioassay results showed that individual compounds exhibited good herbicidal activities, especially compound II-8, which displayed 100% inhibition rate against Echinochloa crusgalli at 150 g/ha(1 ha=104 m2) with the method of foliage spray in the pot experiment.  相似文献   

10.
以氯磺隆(CS)为模板分子,甲基丙烯酸为功能单体,三羟甲基丙烷三甲基丙烯酸酯为交联剂,在二氯甲烷氛围中,经沉淀聚合制备氯磺隆分子印迹聚合物(CS-MIP)微球。将该聚合物微球作为填料制得分子印迹固相萃取柱用于样品前处理,建立了分子印迹固相萃取-高效液相色谱(MIP-SPE-HPLC)同时检测烟叶中6种磺酰脲类除草剂残留的分析方法。针对氯磺隆、甲磺隆、苄嘧磺隆、苯磺隆、胺苯磺隆和烟嘧磺隆6种磺酰脲类除草剂,在烟叶中加标0.50~50 μg/g,经氯磺隆分子印迹固相萃取柱(CS-MIP-SPE)净化和富集,高效液相色谱(HPLC)检测,其平均回收率为77.60%~102.05%,相对标准偏差为0.16%~7.07%,检出限为0.08~0.46 μg/g。将MIP-SPE-HPLC方法用于实际农药残留检测,结果表明可同时满足烟叶中多种磺酰脲类除草剂残留量的检测要求。  相似文献   

11.
A multi-residue analytical method based on solid-phase extraction enrichment combined with capillary electrophoresis (CE), using micellar electrokinetic capillary chromatography, was developed to isolate, recover and quantitate three sulfonylurea herbicides (chlorsulfuron, chlorimuron and metasulfuron) from soil samples. Optimization for CE separation was achieved using an overlapping resolution map scheme. The recovery of each herbicide was >80% and the limit of detection was 10 ppb. The capability of CE in providing quantitative analysis of sulfonylureas in soil samples at the ppb level has been demonstrated.  相似文献   

12.
This paper reports the preparation of metsulfuron-methyl (MSM) imprinted polymer layer-coated silica nanoparticles toward analysis of trace sulfonylurea herbicides in complicated matrices. To induce the selective occurrence of surface polymerization, the polymerizable double bonds were first grafted at the surface of silica nanoparticles by the silylation. Afterwards, the MSM templates were imprinted into the polymer-coating layer through the interaction with functional monomers. The programmed heating led to the formation of uniform MSM-imprinted polymer layer with controllable thickness, and further improved the reproducibility of rebinding capacity. After removal of templates, recognition sites of MSM were exposed in the polymer layers. As a result, the maximum rebinding capacity was achieved with the use of optimal grafting ratio. There was also evidence indicating that the MSM-imprinted polymer nanoparticles compared with nonimprinted polymer nanoparticles had a higher selectivity and affinity to four structure-like sulfonylurea herbicides. Moreover, using the imprinted particles as dispersive solid-phase extraction (DSPE) materials, the recoveries of four sulfonylurea herbicides determined by high-performance liquid chromatography (HPLC) were 80.2-99.5%, 83.8-102.4%, 77.8-93.3%, and 73.8-110.8% in the spiked soil, rice, soybean, and corn samples, respectively. These results show the possibility that the highly selective separation and enrichment of trace sulfonylurea herbicides from soil and crop samples can be achieved by the molecular imprinting modification at the surface of silica nanoparticles.  相似文献   

13.
Sulfonylurea herbicides have been applied worldwide in agriculture. Some sulfonylurea residues might exist in soil longer than that people expected. However, flupyrsulfuron-methyl-sodium which was firstly reported as a new 5-substituted sulfonylurea herbicide has less than one month residual life. Therefore, 5-substituted benzenesulfonylureas are potential molecules to regulate its residual situation. In order to develop new sulfonylurea derivatives, the substituent on the critical 5-posotion of the benzene...  相似文献   

14.
In this study, switchable hydrophilic solvent-based dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography was developed for the determination of four sulfonylurea herbicides in soils. For the first time, the sample pretreatment was achieved due to the similar acid-base status of sulfonylurea herbicides and switchable hydrophilic solvent. In the extraction step, sulfonylurea herbicides were extracted as anions and transferred to an alkaline solution with switchable hydrophilic solvent anions. In the concentration step, two types of anions were transformed to their molecular state after the aqueous solution was acidified. In addition, the dispersion and microextraction processes were completed efficiently with the simultaneous formation of analytes and extractants. The factors affecting the extraction performance were optimized. Under the optimized conditions, good linearity was observed for each herbicide with correlation coefficients ranging from 0.9952 to 0.9978. The limits of detection were in the range of 0.1–0.2 μg/g. Moreover, the relative recoveries of the sulfonylurea herbicides at spiking levels of 0.5, 1, and 1.5 μg/g in soil samples were between 75 and 111% (relative standard deviations: 0.4–11.4%). Therefore, the proposed method in this study could be successfully applied to the analysis of four types of sulfonylurea herbicides in soil samples.  相似文献   

15.
Twelve sulfonylurea herbicides (bensulfuron-methyl, sulfometuron-methyl, ethametsulfuron-methyl, triasulfuron, tribenuron-methyl, nicosulfuron, chlorimuron-ethyl, thifensulfuron-methyl, primisulfuron-methyl, metsulfuron-methyl, chlorsulfuron, and amidosulfuron) were separated by free zone capillary electrophoresis with migration times less than 20 min. The additional simultaneous determination of the 2,3-dihydro-3-oxobenzisosulfonazole (saccharin) degradation product was possible after application of a temperature and voltage gradient. Detector responses (absorbances) at 239 and 220 nm were linear between 0.1 and 10.0 g/ml. After extraction with acetonitrile, recoveries for the same concentration range from two different sediments were higher than 90% with variation coefficients lower than 16%. Dissociation constants of the sulfonylurea herbicides were determined.  相似文献   

16.
Abstract

The sulfonylurea herbicides are a group of about twenty compounds used for the control of broad-leaved weeds and some grasses in cereal crops. These herbicides are non-volatile, and their water solubilities are pH dependent being greater in alkaline than in acidic solutions. Their soil adsorption is generally low, with leaching potential in alkaline field soils. Sulfonylurea herbicides are degraded in soils by both chemical and biochemical mechanisms. Chemical degradation is particularly important in acidic soils where herbicide degradation is considerably more rapid that in soils of pH > 7. Application rates in the order of 10 g ha?1 necessitate analytical techniques capable of quantifying soil based residues in the sub μ kg?1 levels. Analytical methodologies based on plant bioassays, and chemical extraction followed by gas chromatographic (GC), high performance liquid chromatographic (HPLC), and enzyme immunoassay techniques are described and discussed.  相似文献   

17.
Abstract

For the analysis of metsulfuron-methyl in the crop soils with a sensitivity limit of 0.3 μg kg?1 dry soil, in the soil extract metsulfuron-methyl was separated from its soil metabolites and the soil impurities by repeated thin-layer chromatographies (TLC). In the cleaned soil extract, diazomethane transformed metsulfuron-methyl 1 into N,N′ -dimethyl metsulfuron-methyl 2 (methyl 2-[[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)methylamino]carbonyl]methylamino]sulfonyl]benzoate). In the gas-liquid chromatograph with detection by electron capture (GC-EC) and in the combined gas chromatograph-mass spectrometer (GC-MS), 2 was transformed into 1-dioxy-2-N-methyl-3-keto-1,2-benzisothiazole 3 which was measured by GC-EC with confirmation by GC-MS. The metsulfuron-methyl soil metabolites 2-sulfonamido-methylbenzoate 6, 1-dioxy-3-keto-1,2-benzisothiazole (saccharin) 7 and 2-sulfonamidobenzoic acid 8 were analyzed in the soil of winter wheat crops by a procedure similar to the one for metsulfuron-methyl. After their separation and purification in the soil extracts by TLC, 7 and 8 were methylated, and analyzed as 3 in the GC-EC and GC-MS apparatus where the generated 6 was quantitatively transformed into 3; 6 was analyzed as such with the GC and GC-MS apparatus wherein it was transformed into 3. The sensitivity limit for each metabolite was 0.3 μg of equivalents of metsulfuron-methyl kg?1dry soil. The syntheses of the analysis standards of the metsulfuron-methyl derivatives 2 and 3, and of the metsulfuron-methyl metabolites 6, 7 and 8 are described. The transformation pathways of metsulfuron-methyl and of its derivatives are different from those of the pyridine-pyrimidine sulfonylurea herbicides flupyrsulfuron-methyl and rimsulfuron. The soil analysis of a sulfonylurea -by means of one of its transformation product- needs a previous study of the chemical reactivity of the sulfonylurea. This leads to the analysis procedures for the main soil metabolites of the sulfonylurea.  相似文献   

18.
Molecularly imprinted polymers (MIPs) possessing a good binding ability for the family of sulfonylurea herbicides were prepared using 4- or 2-vinyl pyridine as functional monomers and ethylene glycol dimethylacrylate as a crosslinker. Metsulfuron methyl was used as a template. It was found that MIP prepared in a polar organic solvent (acetonitrile) showed good recognition of the template and five other sulfonylurea herbicides (thifensulfuron methyl, chlorsulfuron, prosulfuron, chlorimuron ethyl, triflusulfuron methyl). The binding capacity was 0.08-0.1 mg g−1 of the polymer. It was found that the polymer could be used for quantitative enrichment (>75%) of five sulfonylurea herbicides from water.  相似文献   

19.
新磺酰脲类化合物的合成及生物活性   总被引:7,自引:0,他引:7  
以正在开发的新磷磺酰脲除草剂N-[2′-(4′-甲基)嘧啶基]-2-硝基苯磺酰脲的研究为基础,设计合成了19个脲桥经修饰的磺酰脲类化合物以及3个新型嘧啶中间体,产物结构经1HNMR谱及元素分析确证.盆栽试验和离休ALS酶研究结果表明,所合成的化合物均表现出一定的除草活性,部分化合物的除草活性较好.  相似文献   

20.
Summary Gas chromatographic conditions for determining eight phenylurea (chlortoluron, diuron, fluometuron, isoproturon, linuron, metabenzthiazuron, metobromuron and monuron) and one sulfonylurea (chlorsulfuron) herbicides were assessed. Degradation products of the herbicides formed in the injector were used for identification. Most phenylureas formed their respective carbamic acid methyl esters, metabenzthiazuron formed an aminobenzothiazol and chlorsulfuron formed an aminotriazine plus a phenylsulfonamide. On-column injection of standards using a BP10 capillary column was evaluated to identify the chromatographic behaviour. Detection limits ranged from 0.05 ng for chlorsulfuron to 3 ng for monuron with the NPD and, from 0.01 ng for chlorsulfuron to 5 ng for metabenzthiazuron with the ECD. The RSDs (n=4) were lower than 4% at the 12–25 ng level. The method was applied to the analysis of surface waters extracted with C18 Empore disks with recoveries higher than 85%. Each herbicide could be determined in water down to 0.1 μg·L−1. Chlortoluron was found (11.4 μg·L−1) in a water sample and its presence was confimed by gas chromatography-mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号