首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bisphenol Z (BPZ), bisphenol S (BPS), bisphenol C (BPC), and bisphenol F (BPF) had been widely used as alternatives to bisphenol A (BPA), but the toxicity data of these bisphenol analogues were very limited. In this study, the joint toxicity of BPZ, BPS, BPC, and BPF to zebrafish (Danio rerio) was investigated. The median half lethal concentrations (LC50) of BPZ, BPS, BPC, and BPF to zebrafish for 96 h were 6.9 × 105 µM, 3.9 × 107 µM, 7.1 × 105 µM, and1.6 × 106 µM, respectively. The joint toxicity effect of BPF–BPC (7.7 × 105–3.4 × 105µM) and BPZ–BPC (3.4 × 105–3.5 × 105µM) with the same toxic ratio showed a synergistic effect, which may be attributed to enzyme inhibition or induction theory. While the toxicity effect of the other two bisphenol analogue combined groups and multi-joint pairs showed an antagonistic effect due to the competition site, other causes need to be further explored. Meanwhile, the expression levels of the estrogen receptor genes (ERα, ERβ1) and antioxidant enzyme genes (SOD, CAT, GPX) were analyzed using a quantitative real-time polymerase chain reaction in zebrafish exposure to LC50 of BPZ, BPS, BPC, and BPF collected at 24, 48, 72, and 96 h. Relative expression of CAT, GPX, and ERβ1 mRNA declined significantly compared to the blank control, which might be a major cause of oxidant injury of antioxidant systems and the disruption of the endocrine systems in zebrafish.  相似文献   

2.
The models of oxidative damage-induced aging were established by adding ethanol (C2H5OH), hydrogen peroxide (H2O2) and 6-hydroxydopamine (6-OHDA) to zebrafish embryos in this research. To find effective protective drugs/foods, Salvianolic acid B (Sal B) was added after the embryos were treated by these oxidative reagents. After being treated with ethanol, H2O2 and 6-OHDA, the morphological changes were obvious and the deformities included spinal curvature, heart bleeding, liver bleeding, yolk sac deformity and pericardial edema, and the expression of oxidative stress-related genes Nrf2b, sod1 and sod2 and aging-related genes myl2a and selenbp1 were significantly up-regulated compared to the control group. While after adding 0.05 μg/mL and 0.5 μg/mL Sal B to the ethanol-treated group, death rates and MDA levels decreased, the activity of antioxidant enzyme (SOD, CAT and GSH-Px) changed and Nrf2b, sod1, sod2, myl2a, selenbp1, p53 and p21 were down-regulated compared to the ethanol-treated group. The bioinformatics analysis also showed that oxidative stress-related factors were associated with a variety of cellular functions and physiological pathways. In conclusion, Sal B can protect against aging through regulating the Keap1/Nrf2 pathway as well as antioxidative genes and enzyme activity.  相似文献   

3.
Sweroside is a secoiridoid glycoside and belongs to a large group of naturally occurring monoterpenes with glucose sugar attached to C-1 in the pyran ring. Sweroside can promote different biological activities such as antifungal, antibacterial, hepatoprotective, gastroprotective, sedative and antitumor, antioxidant, and neuroprotective activities. Zebrafish were given sweroside (12.79, 8.35, and 13.95 nM) by immersion once daily for 8 days, along with scopolamine (Sco, 100 μM) 30 min before the initiation of the behavioral testing to cause anxiety and memory loss. Employing the novel tank diving test (NTT), the Y-maze, and the novel object recognition test (NOR), anxiety-like reactions and memory-related behaviors were assessed. The following seven groups (n = 10 animals per group) were used: control, Sco (100 μM), sweroside treatment (2.79, 8.35, and 13.95 nM), galantamine (GAL, 2.71 μM as the positive control in Y-maze and NOR tests), and imipramine (IMP, 63.11 μM as the positive control in NTT test). Acetylcholinesterase activity (AChE) and the antioxidant condition of the brains were also evaluated. The structure of sweroside isolated from Schenkia spicata was identified. Treatment with sweroside significantly improved the Sco-induced decrease of the cholinergic system activity and brain oxidative stress. These results suggest that sweroside exerts a significant effect on anxiety and cognitive impairment, driven in part by the modulation of the cholinergic system activity and brain antioxidant action.  相似文献   

4.
Fraxinellone (FRA), a major active component from Cortex Dictamni, produces hepatotoxicity via the metabolization of furan rings by CYP450. However, the mechanism underlying the hepatotoxicity of FRA remains unclear. Therefore, zebrafish larvae at 72 h post fertilization were used to evaluate the metabolic hepatotoxicity of FRA and to explore the underlying molecular mechanisms. The results showed that FRA (10–30 μM) induced liver injury and obvious alterations in the metabolomics of zebrafish larvae. FRA induces apoptosis by increasing the level of ROS and activating the JNK/P53 pathway. In addition, FRA can induce cholestasis by down-regulating bile acid transporters P-gp, Bsep, and Ntcp. The addition of the CYP3A inhibitor ketoconazole (1 μM) significantly reduced the hepatotoxicity of FRA (30 μM), which indicated that FRA induced hepatotoxicity through CYP3A metabolism. Targeted metabolomics analysis indicates the changes in amino acid levels can be combined with molecular biology to clarify the mechanism of hepatotoxicity induced by FRA, and amino acid metabolism monitoring may provide a new method for the prevention and treatment of DILI from FRA.  相似文献   

5.
The antioxidant activity of food compounds is one of the properties generating the most interest, due to its health benefits and correlation with the prevention of chronic disease. This activity is usually measured using in vitro assays, which cannot predict in vivo effects or mechanisms of action. The objective of this study was to evaluate the in vivo protective effects of six phenolic compounds (naringenin, apigenin, rutin, oleuropein, chlorogenic acid, and curcumin) and three carotenoids (lycopene B, β-carotene, and astaxanthin) naturally present in foods using a zebrafish embryo model. The zebrafish embryo was pretreated with each of the nine antioxidant compounds and then exposed to tert-butyl hydroperoxide (tBOOH), a known inducer of oxidative stress in zebrafish. Significant differences were determined by comparing the concentration-response of the tBOOH induced lethality and dysmorphogenesis against the pretreated embryos with the antioxidant compounds. A protective effect of each compound, except β-carotene, against oxidative-stress-induced lethality was found. Furthermore, apigenin, rutin, and curcumin also showed protective effects against dysmorphogenesis. On the other hand, β-carotene exhibited increased lethality and dysmorphogenesis compared to the tBOOH treatment alone.  相似文献   

6.
7.
Although mucopolysaccharidoses (MPS) are caused by mutations in genes coding for enzymes responsible for degradation of glycosaminoglycans, storage of these compounds is crucial but is not the only pathomechanism of these severe, inherited metabolic diseases. Among various factors and processes influencing the course of MPS, oxidative stress appears to be a major one. Oxidative imbalance, occurring in MPS and resulting in increased levels of reactive oxidative species, causes damage of various biomolecules, leading to worsening of symptoms, especially in the central nervous system (but not restricted to this system). A few therapeutic options are available for some types of MPS, including enzyme replacement therapy and hematopoietic stem cell transplantation, however, none of them are fully effective in reducing all symptoms. A possibility that molecules with antioxidative activities might be useful accompanying drugs, administered together with other therapies, is discussed in light of the potential efficacy of MPS treatment.  相似文献   

8.
Oxidative stress is the result of an imbalance in the redox state in a cell or a tissue. When the production of free radicals, which are physiologically essential for signaling, exceeds the antioxidant capability, pathological outcomes including oxidative damage to macromolecules, aberrant signaling, and inflammation can occur. Down syndrome (DS) and Williams-Beuren syndrome (WBS) are well-known and common genetic conditions with multi-systemic involvement. Their etiology is linked to oxidative stress with important causative genes, such as SOD-1 and NCF-1, respectively, of the diseases being primarily involved in the regulation of the redox state. Early aging, dementia, autoimmunity, and chronic inflammation are some of the main characteristics of these conditions that can be associated with oxidative stress. In recent decades, there has been a growing interest in the possible role of oxidative stress and inflammation in the pathology of these conditions. However, at present, few studies have investigated these correlations. We provide an overview of the current literature concerning the role of oxidative stress and oxidative damage in genetic syndromes with a focus on Down syndrome and WBS. We hope to provide new insights to improve the management of complications related to these diseases.  相似文献   

9.
Origanum vulgare ssp. hirtum has been used as medicinal herbs promoting antioxidant, anti-inflammatory, antimicrobial, and neuroprotective activities. We investigated the protective effects and the mechanism of O. vulgare ssp. hirtum essential oil (OEO) on cognitive impairment and brain oxidative stress in a scopolamine (Sco)-induced zebrafish (Danio rerio) model of cognitive impairment. Our results show that exposure to Sco (100 µM) leads to anxiety, spatial memory, and response to novelty dysfunctions, whereas the administration of OEO (25, 150, and 300 µL/L, once daily for 13 days) reduced anxiety-like behavior and improved cognitive ability, which was confirmed by behavioral tests, such as the novel tank-diving test (NTT), Y-maze test, and novel object recognition test (NOR) in zebrafish. Additionally, Sco-induced brain oxidative stress and increasing of acetylcholinesterase (AChE) activity were attenuated by the administration of OEO. The gas chromatography–mass spectrometry (GC-MS) analyses were used to elucidate the OEO composition, comprising thymol (38.82%), p-cymene (20.28%), and γ-terpinene (19.58%) as the main identified components. These findings suggest the ability of OEO to revert the Sco-induced cognitive deficits by restoring the cholinergic system activity and brain antioxidant status. Thus, OEO could be used as perspective sources of bioactive compounds, displaying valuable biological activities, with potential pharmaceutical applications.  相似文献   

10.
Excess reactive oxygen species production and free radical formation can lead to oxidative stress that can damage cells, tissues, and organs. Cellular oxidative stress is defined as the imbalance between ROS production and antioxidants. This imbalance can lead to malfunction or structure modification of major cellular molecules such as lipids, proteins, and DNAs. During oxidative stress conditions, DNA and protein structure modifications can lead to various diseases. Various antioxidant-specific gene expression and signal transduction pathways are activated during oxidative stress to maintain homeostasis and to protect organs from oxidative injury and damage. The liver is more vulnerable to oxidative conditions than other organs. Antioxidants, antioxidant-specific enzymes, and the regulation of the antioxidant responsive element (ARE) genes can act against chronic oxidative stress in the liver. ARE-mediated genes can act as the target site for averting/preventing liver diseases caused by oxidative stress. Identification of these ARE genes as markers will enable the early detection of liver diseases caused by oxidative conditions and help develop new therapeutic interventions. This literature review is focused on antioxidant-specific gene expression upon oxidative stress, the factors responsible for hepatic oxidative stress, liver response to redox signaling, oxidative stress and redox signaling in various liver diseases, and future aspects.  相似文献   

11.
Coptisine is the major bioactive protoberberine alkaloid found in Rhizoma Coptidis. Coptisine reduces inflammatory responses and improves glucose tolerance; nevertheless, whether coptisine has vasoprotective effect in diabetes is not fully characterized. Conduit arteries including aortas and carotid arteries were obtained from male C57BL/6J mice for ex vivo treatment with risk factors (high glucose or tunicamycin) and coptisine. Some arterial rings were obtained from diabetic mice, which were induced by high-fat diet (45% kcal% fat) feeding for 6 weeks combined with a low-dose intraperitoneal injection of streptozotocin (120 mg/kg). Functional studies showed that coptisine protected endothelium-dependent relaxation in aortas against risk factors and from diabetic mice. Coptisine increased phosphorylations of AMPK and eNOS and downregulated the endoplasmic reticulum (ER) stress markers as determined by Western blotting. Coptisine elevates NO bioavailability and decreases reactive oxygen species level. The results indicate that coptisine improves vascular function in diabetes through suppression of ER stress and oxidative stress, implying the therapeutic potential of coptisine to treat diabetic vasculopathy.  相似文献   

12.
Different species of Artemisia have been reported to have therapeutic potential in treating various health disorders, including diabetes and memory dysfunction. The present study was planned to evaluate the effects of Artemisia macrocephala Jacquem crude extract and its subfractions as antiamnesic agents in streptozotocin-induced (STZ) diabetic mice. The in vivo behavioral studies were performed using the Y Maze test and novel object recognition test (NORT) test at doses of 100 and 200 mg/kg of crude extract and 75 and 150 mg/kg of fractions. The in vitro and ex vivo anticholinesterase activities, along with biochemical parameters (superoxide dismutase, catalase, glutathione and lipid peroxidation) in the brain, were evaluated. Blood glucose levels were monitored with a glucometer; crude extract and fractions reduced the glucose level considerably, with some differences in the extent of their efficacies. The crude extract and fractions demonstrated significant inhibitory activity against cholinesterases (AChE and BuChE) in vitro. Crude, chloroform and ethyl acetate extract were found to be more potent than the other fractions, with IC50 of Crd-Am = 116.36 ± 1.48 and 240.52 ± 1.35 µg/mL, Chl-Am = 52.68 ± 1.09 and 57.45 ± 1.39 µg/mL and Et-Am = 75.19 ± 1.02 and 116.58 ± 1.09 µg/mL, respectively. Oxidative stress biomarkers like superoxide dismutase, catalase and glutathione levels were elevated, whereas MDA levels were reduced by crude extract and all fractions with little difference in their respective values. The Y-maze test and novel object recognition test demonstrated declines in memory impairment in groups (n = 6) treated with crude extract and fractions as compared to STZ diabetic (amnesic) group. The most active fraction, Chl-Am, was also subjected to isolation of bioactive compounds; three compounds were obtained in pure state and designated as AB-I, AB-II and AB-III. Overall, the results of the study showed that Artemisia macrocephala Jacquem enhanced the memory impairment associated with diabetes, elevated acetylcholine levels and ameliorated oxidative stress. Further studies are needed to explore the beneficial role of the secondary metabolites isolated in the present study as memory enhancers. Toxicological aspects of the extracts are also important and need to be evaluated in other animal models.  相似文献   

13.
Pulmonary arterial hypertension (PAH) is clinically characterized by a progressive increase in pulmonary artery pressure, followed by right ventricular hypertrophy and subsequently right heart failure. The underlying mechanism of PAH includes endothelial dysfunction and intimal smooth muscle proliferation. Numerous studies have shown that oxidative stress is critical in the pathophysiology of PAH and involves changes in reactive oxygen species (ROS), reactive nitrogen (RNS), and nitric oxide (NO) signaling pathways. Disrupted ROS and NO signaling pathways cause the proliferation of pulmonary arterial endothelial cells (PAECs) and pulmonary vascular smooth muscle cells (PASMCs), resulting in DNA damage, metabolic abnormalities, and vascular remodeling. Antioxidant treatment has become a main area of research for the treatment of PAH. This review mainly introduces oxidative stress in the pathogenesis of PAH and antioxidative therapies and explains why targeting oxidative stress is a valid strategy for PAH treatment.  相似文献   

14.
不同氛围下烟草的热裂解行为研究   总被引:2,自引:0,他引:2  
烟丝分别在He和空气环境中于600、700、800、900、1 000 ℃下进行热裂解,裂解产物用GC-MS进行在线检测,研究了烟丝样品分别在惰性和有氧氛围中不同温度下的热裂解行为.数据表明,烟丝在He气和空气中热裂解时的产物有较大差异,He气下的裂解产物以烯烃、苯和苯系物为主;在空气下裂解的主要产物为酮、醛、醇、酸和酯等羰基化合物.有氧氛围有益于异戊二烯和1,3-丁二烯的生成,但在一定程度上抑制了酚类物质的产生.在惰性和有氧氛围下,随着温度的升高,多环芳烃化合物的产生量均进一步增加.He氛围下得到的裂解产物类型接近卷烟燃烧时的热解区,而空气氛围下得到的裂解产物类型接近燃烧区.  相似文献   

15.
Salmonella typhimurium infection is associated with gastrointestinal disorder and cellular injury in the liver of both humans and animals. Cinnamaldehyde, the main component of essential oil from cinnamon, has been reported to have anti-inflammatory, anti-oxidative, and anti-apoptotic effects. However, it remains unknown whether cinnamaldehyde can alleviate Salmonella typhimurium infection-induced liver injury in mice. In the present study, we found that cinnamaldehyde attenuated Salmonella typhimurium-induced body weight loss, the increase of organ (liver and spleen) indexes, hepatocyte apoptosis, and the mortality rate in mice. Further study showed that cinnamaldehyde significantly alleviated Salmonella typhimurium-induced liver injury as shown by activities of alanine transaminase, aspartate transaminase, and myeloperoxidase, as well as malondialdehyde. The increased mRNA level of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IFN-γ) and chemokines (CCL2 and CCL3) induced by Salmonella typhimurium were significantly abolished by cinnamaldehyde supplementation. These alterations were associated with a regulatory effect of cinnamaldehyde on TLR2, TLR4, and MyD88. 16S rDNA sequence analysis showed that Salmonella typhimurium infection led to upregulation of the abundances of genera Akkermansia, Bacteroides, Alistipes, Muribaculum, and Prevotellaceae UCG-001, and downregulation of the abundances of genera Lactobacillus, Enterorhabdus, and Eggerthellaceae (unclassified). These alterations were reversed by cinnamaldehyde supplementation. In conclusion, cinnamaldehyde attenuated the inflammatory response, oxidative stress, and apoptosis in the liver of Salmonella typhimurium-infected mice. Supplementation of cinnamaldehyde might be a preventive strategy to alleviate liver injury caused by Salmonella typhimurium infection in humans and animals.  相似文献   

16.
Background: Tomato by-products contain a great variety of biologically active substances and represent a significant source of natural antioxidant supplements of the human diet. The aim of the work was to compare the antioxidant properties of a by-product from an ancient Tuscan tomato variety, Rosso di Pitigliano (RED), obtained by growing plants in normal conditions (-Ctr) or in drought stress conditions (-Ds) for their beneficial effects on vascular related dysfunction. Methods: The antioxidant activity and total polyphenol content (TPC) were measured. The identification of bioactive compounds of tomato peel was performed by HPLC. HUVEC were pre-treated with different TPC of RED-Ctr or RED-Ds, then stressed with H2O2. Cell viability, ROS production and CAT, SOD and GPx activities were evaluated. Permeation of antioxidant molecules contained in RED across excised rat intestine was also studied. Results: RED-Ds tomato peel extract possessed higher TPC than compared to RED-Ctr (361.32 ± 7.204 mg vs. 152.46 ± 1.568 mg GAE/100 g fresh weight). All extracts were non-cytotoxic. Two hour pre-treatment with 5 µg GAE/mL from RED-Ctr or RED-Ds showed protection from H2O2-induced oxidative stress and significantly reduced ROS production raising SOD and CAT activity (* p < 0.05 and ** p < 0.005 vs. H2O2, respectively). The permeation of antioxidant molecules contained in RED-Ctr or RED-Ds across excised rat intestine was high with non-significant difference between the two RED types (41.9 ± 9.6% vs. 26.6 ± 7.8%). Conclusions: RED-Ds tomato peel extract represents a good source of bioactive molecules, which protects HUVECs from oxidative stress at low concentration.  相似文献   

17.
The current study was conducted to exemplify the effect of debelalactone on tissue protection, chronic hepatic inflammation, hepatic protection and oxidative stress induced by diethyl nitrosamine in Wistar rats. Therefore, DEN (200 mg/kg) was used for the induction the hepatocellular carcinoma (HCC) and the level of serum alpha fetoprotein was used for the estimation and confirmation of HCC. The study illustrated that debelalactone (DL) significantly downregulated the hepatic, non-hepatic parameters such as aspartate aminotransferase, alanine aminotransferase, alpha fetoprotein, NO levels, total protein, albumin, blood urea nitrogen, total bilirubin, and direct bilirubin in dose dependent manner, as well as noticeably improving the body weight, of treated animals. The macroscopically observation of DEN-induced rat liver showed the formation of informalities in liver tissue, which was reduced with treatment of DL at dose dependent manner. However, antioxidant markers and inflammatory mediators such as lipid peroxidation, catalase, superoxide dismutase, glutathione peroxidase and transferase, TNF-α, IL-1β, IL-6, and NF-kB restored up to the normal level by DL. The histopathology studies showed that the treated group of animals returned to a normal status. Collectively, it can be concluded that debelalactone mediated chemoprevention in the DEN-induced rats via an increase in the activities of endogenous enzymes and/or inhibition the precancerous cells.  相似文献   

18.
Increasing evidence indicates that nobiletin (NOB) is a promising neuroprotective agent. Astrocyte activation plays a key role in neurodegenerative disorders. Thus, this study aims to investigate the effects of NOB on astrocyte activation and the potential mechanisms. In this study, astrocytes were exposed to hypoxia injury for 24 h to induce activation in vitro. Glial fibrillary acidic protein (GFAP) was chosen as a marker of astrocyte activation. To evaluate the effects of NOB on the migration of activated astrocytes, we used a scratch wound healing assay and Transwell migration assay. In addition, the levels of reactive oxygen species (ROS), malondialdehyde (MDA), mitochondrial membrane potential, Nrf2 and HO-1 were measured to investigate the mechanisms of NOB in the activation of astrocytes. We found that NOB alleviated astrocyte activation and decreased GFAP expression during hypoxia. Simultaneously, NOB alleviated the migration of astrocytes induced by hypoxia. With NOB treatment, hypoxia-induced oxidative stress was partially reversed, including reducing the production of ROS and MDA. Furthermore, NOB significantly improved the mitochondrial dysfunction in activated astrocytes. Finally, NOB promoted Nrf2 nuclear translocation and HO-1 expression in response to continuous oxidative damage. Our study indicates, for the first time, that NOB alleviates the activation of astrocytes induced by hypoxia in vitro, in part by ameliorating oxidative stress and mitochondrial dysfunction. This provides new insights into the neuroprotective effects of NOB.  相似文献   

19.
Overproduction of superoxide anion (O2.−), the primary cellular reactive oxygen species (ROS), is implicated in various human diseases. To reduce cellular oxidative stress caused by overproduction of superoxide, we developed a compound that reacts with O2.− to release a persulfide (RSSH), a type of reactive sulfur species related to the gasotransmitter hydrogen sulfide (H2S). Termed SOPD-NAC , this persulfide donor reacts specifically with O2.−, decomposing to generate N-acetyl cysteine (NAC) persulfide. To enhance persulfide delivery to cells, we conjugated the SOPD motif to a short, self-assembling peptide (Bz-CFFE-NH2) to make a superoxide-responsive, persulfide-donating peptide ( SOPD-Pep ). Both SOPD-NAC and SOPD-Pep delivered persulfides/H2S to H9C2 cardiomyocytes and lowered ROS levels as confirmed by quantitative in vitro fluorescence imaging studies. Additional in vitro studies on RAW 264.7 macrophages showed that SOPD-Pep mitigated toxicity induced by phorbol 12-myristate 13-acetate (PMA) more effectively than SOPD-NAC and several control compounds, including common H2S donors.  相似文献   

20.
Obesity is becoming increasingly common all over the world and global strategies are accordingly being developed to prevent it. In order to support the strategies, the effects of green apple (Golden Delicious) and the consumption of its three major flavonols (quercetin-3-glucoside, quercetin-3-D-galactoside, and quercetin-3-rhamnoside) on body weight; the weight of liver, kidney, and spleen; some lipid parameters in serum; and total lipid ratios of liver and kidney and oxidative stress parameters of obese rats were studied. This study was conducted on two experimental groups: one of which was given an apple, and the other was given flavonols, in addition to their high-energy diet; along with a sham and a control rat group, for 4 weeks. According to results, there was no difference in body and organ weights between groups. The liver and kidney weights increased in obese rats, but there was no difference between the total lipid ratios in these organs. The addition of green apple and selected flavonols to the high-energy diet of rats was not sufficient to prevent the increase in body and organ weights, but it supported the reduction in some lipid fractions and in oxidative stress parameters of obese rats. Moreover, this study supported the argument that obesity causes most of the lipid fractions increase in serum and induces oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号