首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Chemicals underlying the floral aroma of dry teas needs multi-dimensional investigations. Green, black, and freeze-dried tea samples were produced from five tea cultivars, and only ‘Chunyu2’ and ‘Jinguanyin’ dry teas had floral scents. ‘Chunyu2’ green tea contained the highest content of total volatiles (134.75 μg/g) among green tea samples, while ‘Jinguanyin’ black tea contained the highest content of total volatiles (1908.05 μg/g) among black tea samples. The principal component analysis study showed that ‘Chunyu2’ and ‘Jinguanyin’ green teas and ‘Chunyu2’ black tea were characterized by the abundant presence of certain alcohols with floral aroma, while ‘Jinguanyin’ black tea was discriminated due to the high levels of certain alcohols, esters, and aldehydes. A total of 27 shared volatiles were present in different tea samples, and the contents of 7 floral odorants in dry teas had correlations with those in fresh tea leaves (p < 0.05). Thus, the tea cultivar is crucial to the floral scent of dry tea, and these seven volatiles could be promising breeding indices.  相似文献   

2.
Citrus tea is an emerging tea drink produced from tea and the pericarp of citrus, which consumers have increasingly favored due to its potential health effects and unique flavor. This study aimed to simultaneously combine the characteristic volatile fingerprints with the odor activity values (OAVs) of different citrus teas for the first time by headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). Results showed that the establishment of a citrus tea flavor fingerprint based on HS-GC-IMS data can provide an effective means for the rapid identification and traceability of different citrus varieties. Moreover, 68 volatile compounds (OAV > 1) were identified by HS-SPME-GC-MS, which reflected the contribution of aroma compounds to the characteristic flavor of samples. Amongst them, the contribution of linalool with sweet flower fragrance was the highest. Odorants such as decanal, β-lonone, β-ionone, β-myrcene and D-limonene also contributed significantly to all samples. According to principal component analysis, the samples from different citrus teas were significantly separated. Visualization analysis based on Pearson correlation coefficients suggested that the correlation between key compounds was clarified. A comprehensive evaluation of the aroma of citrus tea will guide citrus tea flavor quality control and mass production.  相似文献   

3.
Propolis is a balsamic product obtained from vegetable resins by exotic Africanized bees Apis mellifera L., transported and processed by them, originating from the activity that explores and maintains these individuals. Because of its vegetable and natural origins, propolis is a complex mixture of different compound classes; among them are the volatile compounds present in the aroma. In this sense, in the present study we evaluated the volatile fraction of propolis present in the aroma obtained by distillation and simultaneous extraction, and its chemical composition was determined using coupled gas chromatography, mass spectrometry, and flame ionization detection. The majority of compounds were sesquiterpene and hydrocarbons, comprising 8.2–22.19% α-copaene and 6.2–21.7% β-caryophyllene, with additional compounds identified in greater concentrations. Multivariate analysis showed that samples collected from one region may have different chemical compositions, which may be related to the location of the resin’s production. This may be related to other bee products.  相似文献   

4.
α-Glucosidase was immobilized on magnetic nanoparticles (MNPs) for selective solid-phase extraction of the enzyme’s ligands present in Aloe vera, which is a medicinal plant used for the treatment of various diseases and possesses anti-diabetic activity. One new compound, aloeacone (2), together with two known compounds, aloenin aglycone (1) and aloin A (3), were fished out as the enzyme’s ligands. The structure of 2 was determined by HR-MS and comprehensive NMR techniques. Compound 3 exhibited a weak inhibitory effect on α-glucosidase, while compounds 1 and 2 were found to possess activation effects on the enzyme for the first time. It is interesting that both an inhibitor and agonists of α-glucosidase were fished out in one experiment.  相似文献   

5.
This work involves a comprehensive chemical composition analysis of leaf and cone samples of Lithuanian hop varieties. This study aimed to determine the chemometric properties of the leaves and cones of five Lithuanian hop varieties. Determined properties were the following: (a) xanthohumol content, (b) phenolic compounds, (c) flavonoids, (d) radical scavenging activity, and (e) the qualitative composition of volatile compounds. The total content of phenolic compounds in aqueous 75% methanolic extracts varied between 31.4–78.2 mg of rutin equivalents (RE)/g, and the concentration of flavonoids was between 11.0–23.3 mg RE/g. Radical scavenging activity varied between 34.4–87.2 mg RE/g. A QUENCHER analysis procedure showed 91.7–168.5 mg RE/g of the total phenolic compound content, 12.7–21.4 mg RE/g of flavonoids, and 48.4–121.0 mg RE/g of radical scavenging activity. ‘Fredos taurieji’ and ‘Fredos derlingieji’ varieties have shown maximum values of phenolic compounds and radical scavenging activity both in leaf and cone suspensions. These varieties accumulated a higher amount of xanthohumol in leaves. The concentration of xanthohumol in the samples varied between 0.0014–0.2136% of dry mass, with the highest concentration in the cones of ‘Kauno gražieji’. We identified 19 volatile compounds in leaves, and in cones, we identified 32. In both of them, α-humulene and β caryophyllene dominated. ‘Raudoniai’ leaves were exceptional in their aroma due to dominating compound nagina ketone (Kovats index 1306). The QUENCHER procedure has shown a great potential for the unextractable residue of hop raw material. Further investigation and valorization of different hop biomass components, not only cones, are essential.  相似文献   

6.
Yongchuan douchi is a traditional fermented soya bean product which is popular in Chinese dishes due to its unique flavor. In this study, the key aroma-active compounds of Yongchuan douchi were characterized by the combined gas chromatography–olfactometry (GC–O) and gas chromatography−mass spectrometry (GC–MS) with sensory evaluation. In total, 49 aroma compounds were sniffed and identified, and 20 of them with high flavor dilution factors (FD) and odor activity values (OAVs) greater than one were screened by applied aroma extract dilution analysis (AEDA) and quantitated analysis. Finally, aroma recombination and omission experiments were performed and 10 aroma-active compounds were thought to have contributed significantly including 2,3-butanedione (butter, cheese), dimethyl trisulfide (garlic-like), acetic acid (pungent sour), acetylpyrazine (popcorn-like), 3-methylvaleric acid (sweaty), 4-methylvaleric acid (sweaty), 2-mehoxyphenol (smoky), maltol (caramel), γ-nonanolactone (coconut-like), eugenol (woody) and phenylacetic acid (flora). In addition, sensory evaluation showed that the flavor profile of Yongchuan douchi mainly consisted of sauce-like, sour, nutty, smoky, caramel and fruity notes.  相似文献   

7.
In this study, the synthesis of new monostyryl (BDPY-2) and distyryl BODIPY dyes (BDPY-4, BDPY-5) containing pyridine groups has been reported for the first time. The acetylcholinesterase from Electrophorus electricus (AChE), butyrylcholinesterase from equine serum (BuChE), α-glucosidase from Saccharomyces cerevisiae and DNA hydrolytic cleavage actions of BDPY-2, BDPY-4, BDPY-5 were investigated using various techniques. The results indicated that the compounds had varying inhibition properties against AChE, BuChE, and α-glucosidase. BDPY-4 was the most potent compound on AChE with IC50 of 54.78 ± 4.51 µM, and Lineweaver–Burk plots indicated that the compound is bound to a site other than the active site as a noncompetitive inhibitor. The compound-protein binding experiment showed that BDPY-4 changed the microenvironment around AChE. On the other hand, the compounds showed lower α-glucosidase inhibition than the positive control. The DNA hydrolytic cleavage effects were not observed on supercoiled plasmid DNA in the presence of the compounds as compared to negative controls. These findings suggested that BDPY-4 might be a promising compound to treat Alzheimer’s diseases.  相似文献   

8.
9.
Submerged fermentation of green tea with the basidiomycete Mycetinis scorodonius resulted in a pleasant chocolate-like and malty aroma, which could be a promising chocolate flavor alternative to current synthetic aroma mixtures in demand of consumer preferences towards healthy natural and ‘clean label’ ingredients. To understand the sensorial molecular base on the chocolate-like aroma formation, key aroma compounds of the fermented green tea were elucidated using a direct immersion stir bar sorptive extraction combined with gas chromatography–mass spectrometry–olfactometry (DI-SBSE-GC-MS-O) followed by semi-quantification with internal standard. Fifteen key aroma compounds were determined, the most important of which were dihydroactinidiolide (odor activity value OAV 345), isovaleraldehyde (OAV 79), and coumarin (OAV 24), which were also confirmed by a recombination study. Furthermore, effects of the fermentation parameters (medium volume, light protection, agitation rate, pH, temperature, and aeration) on the aroma profile were investigated in a lab-scale bioreactor at batch fermentation. Variation of the fermentation parameters resulted in similar sensory perception of the broth, where up-scaling in volume evoked longer growth cycles and aeration significantly boosted the concentrations yet added a green note to the overall flavor impression. All findings prove the robustness of the established fermentation process with M. scorodonius for natural chocolate-like flavor production.  相似文献   

10.
Different parts of Araucaria bidiwillii (bunya pin) trees, such as nuts, seeds, bark, and shoots, are widely used in cooking, tea, and traditional medicines around the world. The shoots essential oil (EO) has not yet been studied. Herein, the chemical profile of A. bidiwillii shoots EO (ABSEO) was created by GC–MS analysis. Additionally, the in vivo oral and topical anti-inflammatory effect against carrageenan-induced models, as well as antipyretic potentiality of ABSEO and its nanoemulsion were evaluated. Forty-three terpenoid components were identified and categorized as mono- (42.94%), sesqui- (31.66%), and diterpenes (23.74%). The main compounds of the ABSEO were beyerene (20.81%), α-pinene (16.21%), D-limonene (14.22%), germacrene D (6.69%), β-humulene (4.14%), and sabinene (4.12%). The ABSEO and its nanoemulsion exhibited significant inflammation suppression in carrageenan-induced rat paw edema model, in both oral (50 and 100 mg/kg) and topical (5% in soyabean oil) routes, compared to the control and reference drugs groups. All the results demonstrated the significant inflammation reduction via the inflammatory cytokines (IL-1β and IL8), nitrosative (NO), and prostaglandin E2 (PGE2) supported by the histopathological studies and immunohistochemical assessment of MMP-9 and NF-κβ levels in paw tissues. Moreover, the oral administration of ABSEO and its nanoemulsion (50 and 100 mg/kg) exhibited antipyretic activity in rats, demonstrated by the inhibition of hyperthermia induced by intramuscular injection of brewer’s yeast. These findings advised that the use of ABSEO and its nanoemulsion against numerous inflammatory and hyperthermia ailments that could be attributed to its active constituents.  相似文献   

11.
12.
13.
The essential oil (EO) of Calycolpus goetheanus (Myrtaceae) specimens (A, B, and C) were obtained through hydrodistillation. The analysis of the chemical composition of the EOs was by gas chromatography coupled with mass spectrometry CG-MS, and gas chromatography coupled with a flame ionization detector CG-FID. The phytotoxic activity of those EOs was evaluated against two weed species from common pasture areas in the Amazon region: Mimosa pudica L. and Senna obtusifolia (L.) The antioxidant capacity of the EOs was determined by (DPPH) and (ABTS•+). Using molecular docking, we evaluated the interaction mode of the major EO compounds with the molecular binding protein 4-hydroxyphenylpyruvate dioxygenase (HPPD). The EO of specimen A was characterized by β-eudesmol (22.83%), (E)-caryophyllene (14.61%), and γ-eudesmol (13.87%), while compounds 1,8-cineole (8.64%), (E)-caryophyllene (5.86%), δ-cadinene (5.78%), and palustrol (4.97%) characterize the chemical profile of specimen B’s EOs, and specimen C had α-cadinol (9.03%), δ-cadinene (8.01%), and (E)-caryophyllene (6.74%) as the majority. The phytotoxic potential of the EOs was observed in the receptor species M. pudica with percentages of inhibition of 30%, and 33.33% for specimens B and C, respectively. The EOs’ antioxidant in DPPH was 0.79 ± 0.08 and 0.83 ± 0.02 mM for specimens A and B, respectively. In the TEAC, was 0.07 ± 0.02 mM for specimen A and 0.12 ± 0.06 mM for specimen B. In the results of the in silico study, we observed that the van der Waals and hydrophobic interactions of the alkyl and pi-alkyl types were the main interactions responsible for the formation of the receptor–ligand complex.  相似文献   

14.
Salvia officinalis L. (sage) is one of the most appreciated plants for its plethora of biologically active compounds. The objective of our research was a comparative study, in the Mediterranean context, of chemical composition, anticholinesterases, and antioxidant properties of essential oils (EOs) from sage collected in three areas (S1–S3) of Southern Italy. EOs were extracted by hydrodistillation and analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory properties were investigated by employing Ellman’s method. Four in vitro assays, namely, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric-reducing ability power (FRAP), and β-carotene bleaching tests, were used to study the antioxidant effects. Camphor (16.16–18.92%), 1,8-cineole (8.80–9.86%), β-pinene (3.08–9.14%), camphene (6.27–8.08%), and α-thujone (1.17–9.26%) are identified as the most abundant constituents. However, the content of these constituents varied depending on environmental factors and pedoclimatic conditions. Principal component analysis (PCA) was performed. Based on Relative Antioxidant Capacity Index (RACI), S2 essential oil exhibited the highest radical potential with an IC50 value of 20.64 μg/mL in ABTS test and presented the highest protection of lipid peroxidation with IC50 values of 38.06 and 46.32 μg/mL after 30 and 60 min of incubation, respectively. The most promising inhibitory activity against BChE was found for S3 sample (IC50 of 33.13 μg/mL).  相似文献   

15.
Phenolic compounds in the fruit of American cranberry (Vaccinium macrocarpon Aiton) determine the antioxidant, anti-inflammatory, anticancer, and other biological effects. The berries are used in the production of medicinal preparations and food supplements, which highlights the importance of qualitative and quantitative analysis of phenolic compounds in cranberry fruit raw material. The aim of our study was to develop and validate an efficient, cost-effective, reproducible, and fast UPLC-DAD methodology for the evaluation of the qualitative and quantitative composition of phenolic compounds in raw material and preparations of American cranberry fruit. During the development of the methodology, chlorogenic acid and the following flavonols were identified in cranberry fruit samples: myricetin-3-galactoside, quercetin-3-galactoside, quercetin-3-glucoside, quercetin-3-α-L-arabinopyranoside, quercetin-3-α-L-arabinofuranoside, quercetin-3-rhamnoside, myricetin, and quercetin. The developed and optimized UPLC-DAD methodology was validated according to the guidelines of the International Council for Harmonization (ICH), evaluating the following parameters: range, specificity, linearity (R2 > 0.999), precision (%RSD < 2%), LOD (0.38–1.01 µg/mL), LOQ (0.54–3.06 µg/mL), and recovery (80–110%). The developed methodology was applied to evaluate the qualitative and quantitative composition of phenolic compounds in fruit samples of cranberry cultivars ‘Baifay’, ‘Bergman’, ‘Prolific’, and ‘Searles’, as well as ‘Bain-MC’ and ‘BL-12′ clones. In the tested samples, the majority (about 70%) of the identified flavonols were quercetin derivatives. The greatest amount of quercetin-3-galactoside (1035.35 ± 4.26 µg/g DW) was found in fruit samples of the ‘Searles’ cultivar, and the greatest amount of myricetin-3-galactoside (940.06 ± 24.91 µg/g DW) was detected in fruit samples of the ‘Woolman’ cultivar.  相似文献   

16.
The purpose of this study was to determine the chemical composition, physical properties, enantiomeric composition and cholinesterase inhibitory activity of the essential oil (EO) steam-distilled from the leaves of the plant Araucaria brasiliensis Loud. collected in Ecuador. The chemical composition was determined by gas chromatography coupled to mass spectrometry (GC-MS) analysis on two capillary GC columns (DB5-ms and HP-INNOWax). Thirty-three compounds were identified in the EO; the main compounds were beyerene (26.08%), kaurene (24.86%), myrcene (11.02%), α-pinene (9.99%) and 5,15-rosadiene (5.87%). Diterpene hydrocarbons (65.41%), followed by monoterpene hydrocarbons (21.11%), were the most representative components of the EO. Enantioselective analysis of the EO showed four pairs of enantiomeric compounds, α-pinene, camphene, γ-muurolene and δ-cadinene. In an in vitro assay, the EO showed moderate inhibitory activity towards the enzyme butyrylcholinesterase (BuChE) (95.7 µg/mL), while it was inactive towards acetylcholinesterase (AChE) (225.3 µg/mL). Further in vivo studies are needed to confirm the anticholinesterase potential of the EO.  相似文献   

17.
Annona muricata leaves are traditionally used as an anticancer plant in the world. The aim of this study was to evaluate the ameliorative effect of the essential oil from Annona muricata leaves (EOAm) in an experimental model of breast cancer and to determine the volatile constituents with gas chromatography-mass spectrometry (GC-MS). Thirty female rats were assigned to five groups: the control group; the DMBA (7,12-dimethylbenz[α]anthracene) group; and three groups received daily EOAm doses of 50, 100, and 200 mg/kg/day, plus DMBA, respectively. After 13 weeks of treatment, tumors were analyzed pathologically and biochemical markers in serum were noted. As a result, in GC-MS analysis, 40 compounds were identified and 4 of them were abundant: Z-caryophyllene (40.22%), followed by α-selinene (9.94%), β-pinene (8.92%), and β-elemene (7.48%). Furthermore, EOAm in a dose-dependent form produced a reduction in tumor frequency and the accumulated tumor volume was reduced by 50% and 71% with doses of 100 and 200 mg/kg, respectively. Serum levels of reduced glutathione (GSH) increased and malondialdehyde (MDA) decreased significantly compared to the DMBA group. Serum levels of vascular endothelial growth factor (VEGF) decreased significantly from 70.75 ± 7.15 pg/mL in the DMBA group to 46.50 ± 9.00 and 34.13 ± 11.50 pg/mL in groups treated with doses of 100 and 200 mg/kg, respectively. This study concludes that the EOAm leaves showed an ameliorative effect in a murine model of breast cancer.  相似文献   

18.
The identification of compounds which protect the double-membrane of mitochondrial organelles from disruption by toxic confomers of amyloid proteins may offer a therapeutic strategy to combat human neurodegenerative diseases. Here, we exploited an extract from the marine brown seaweed Padina pavonica (PPE) as a vital source of natural bioactive compounds to protect mitochondrial membranes against insult by oligomeric aggregates of the amyloidogenic proteins amyloid-β (Aβ), α-synuclein (α-syn) and tau, which are currently considered to be major targets for drug discovery in Alzheimer’s disease (AD) and Parkinson’s disease (PD). We show that PPE manifested a significant inhibitory effect against swelling of isolated mitochondria exposed to the amyloid oligomers, and attenuated the release of cytochrome c from the mitochondria. Using cardiolipin-enriched synthetic lipid membranes, we also show that dye leakage from fluorophore-loaded vesicles and formation of channel-like pores in planar bilayer membranes are largely prevented by incubating the oligomeric aggregates with PPE. Lastly, we demonstrate that PPE curtails the ability of Aβ42 and α-syn monomers to self-assemble into larger β-aggregate structures, as well as potently disrupts their respective amyloid fibrils. In conclusion, the mito-protective and anti-aggregator biological activities of Padina pavonica extract may be of therapeutic value in neurodegenerative proteinopathies, such as AD and PD.  相似文献   

19.
Catalpa pod has been used in traditional medicine for the treatment of diabetes mellitus in South America. Studies on the constituents of Catalpa species have shown that it is rich in iridoids. In the present study, three previously undescribed compounds (2–4), including two secoiridoid derivatives along with twelve known compounds, were isolated from the fruits of Catalpa bignonioides Walt. In addition, fully assigned 13C-NMR of 5,6-dihydroxy-7,4’-dimethoxyflavone-6-O-sophoroside (1) is reported for the first time in the present study. The structures of compounds were determined on the basis of extensive spectroscopic methods, including UV, IR, 1D, and 2D NMR, mass spectroscopy, and CD spectroscopic data. All the isolated compounds were evaluated for α-glucosidase inhibitory activity. Among the tested compounds, compounds 2, 3, and 9 exhibited significant inhibitory activity against α-glucosidase enzyme assay. Meanwhile, the effect of compounds 2, 3, and 9 on glucose-stimulated insulin secretion (GSIS) was measured using pancreatic β-cells. Compounds 2, 3, and 9 exhibited non-cytotoxicity-stimulated insulin secretion in INS-1 cells. The expression levels of proteins associated with β-cell function and insulin secretion such as phosphorylation of total insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), Akt, activated pancreatic duodenal homeobox-1 (PDX-1), and peroxisome proliferator-activated receptor-γ (PPAR-γ) were increased in INS-1 cells after treatment with compounds 2, 3, and 9. The findings of the present study could provide a scientific warrant for their application as a potential antidiabetic agent.  相似文献   

20.
In the study, two novel compounds along with two new compounds were isolated from Grewia optiva. The novel compounds have never been reported in any plant source, whereas the new compounds are reported for the first time from the studied plant. The four compounds were characterized as: 5,5,7,7,11,13-hexamethyl-2-(5-methylhexyl)icosahydro-1H-cyclopenta[a]chrysen-9-ol (IX), docosanoic acid (X), methanetriol mano formate (XI) and 2,2’-(1,4-phenylene)bis(3-methylbutanoic acid (XII). The anticholinesterase, antidiabetic, and antioxidant potentials of these compounds were determined using standard protocols. All the isolated compounds exhibited a moderate-to-good degree of activity against acetylcholinesterases (AChE) and butyrylcholinesterase (BChE). However, compound XII was particularly effective with IC50 of 55 μg/mL (against AChE) and 60 μg/mL (against BChE), and this inhibitory activity is supported by in silico docking studies. The same compound was also effective against DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) radicals with IC50 values of 60 and 62 μg/mL, respectively. The compound also significantly inhibited the activities of α-amylase and α-glucosidase in vitro. The IC50 values for inhibition of the two enzymes were recorded as 90 and 92 μg/mL, respectively. The in vitro potentials of compound XII to treat Alzheimer’s disease (in terms of AchE and BChE inhibition), diabetes (in terms of α-amylase and α-glucosidase inhibition), and oxidative stress (in terms of free radical scavenging) suggest further in vivo investigations of the compound for assessing its efficacy, safety profile, and other parameters to proclaim the compound as a potential drug candidate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号