首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The permeate fluxes and percent protein transmission were evaluated for steady-state crossflow ultrafiltration of two proteins of different composition: bovine serum albumin (BSA), containing fatty acid, and “fatty-acid-poor” BSA, from which most of the fatty acids had been removed (BSA/FAP). The influences of protein concentration up to 6.5 percent w/v, transmembrane pressure, ionic environment and membrane type (i.e. nominal molecular weight cut-off) were investigated. For both BSA and BSA/FAP, the fluxes and the protein transmission were dependent on the amount of salt present. The higher fatty acid content in the BSA apparently enhanced protein-protein interaction, resulting in a more cohesive and resistant fouling layer; permeate fluxes were lower with BSA/FAP than with BSA at otherwise corresponding operating conditions. A hysteresis behaviour of the flux (J)-transmembrane pressure (TMP) relationship was observed whenever the ultrafiltration unit was operated at a TMP less than some higher value to which the membrane previously had been exposed.  相似文献   

2.
Reverse osmosis (RO) is being increasingly used in treatment of domestic wastewater secondary effluent for potable and non-potable reuse. Among other solutes, dissolved biopolymers, i.e., proteins and polysaccharides, can lead to severe fouling of RO membranes. In this study, the roles of RO membrane surface properties in membrane fouling by two model biopolymers, bovine serum albumin (BSA) and sodium alginate, were investigated. Three commercial RO membranes with different surface properties were tested in a laboratory-scale cross-flow RO system. Membrane surface properties considered include surface roughness, zeta potential, and hydrophobicity. Experimental results revealed that membrane surface roughness had the greatest effect on fouling by the biopolymers tested. Accordingly, modified membranes with smoother surfaces showed significantly lower fouling rates. When Ca2+ was present, alginate fouled RO membranes much faster than BSA. Considerable synergistic effect was observed when both BSA and alginate were present. The larger foulant particle sizes measured in the co-existence of BSA and alginate indicate formation of BSA-alginate aggregates, which resulted in greater fouling rates. Faster initial flux decline was observed at higher initial permeate flux even when the flux was measured against accumulative permeate volume, indicating a negative impact of higher operating pressure.  相似文献   

3.
Although an amount of research has reported that a flux minimum occurs at the isoionic/isoelectric points (pH 4.6-5.0) in the absence of salts in the ultrafiltration of bovine serum albumin (BSA), the real mechanism remains incompletely understood due to the lack of additional techniques in real time to detect the properties of deposited BSA (gel) layers formed during ultrafiltration (UF). An ultrasonic technique was developed as an analytical noninvasive tool to in situ investigate the properties of deposited BSA layers at pH 4.9 (isoionic or isoelectric point, IEP) and 6.9 during crossflow ultrafiltration. The membrane was a polysulfone (PSf) UF membrane with molecular weight cut-off (MWCO) 35 kDa. The feed used was 0.5 g/l BSA solution. Results show good correspondence between the ultrasonic signal responses and the development of BSA gel layers on the membranes. The deposit is thicker at pH 6.9 than at pH 4.9. However, the deposited gel layers are more compressible at pH 4.9 than at pH 6.9. The flux decline is mainly controlled by the density (packing) of the deposit layer. At pH 6.9, protein mainly deposits on the membrane surface. Around the isoelectric point, protein absorbs within and on the membranes. A functional relationship between acoustic signals and fouling resistance exists. The fouling resistance is mainly attributed to pore blocking or pore constriction.  相似文献   

4.
A new random copolymer was synthesized by reacting hydrophilic N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) (DMMSA) with hydrophobic butyl methacrylate (BMA) through a conventional radical polymerization. The as-prepared sulfobetaine copolymer (DMMSA–BMA) was blended with polyethersulfone (PES) to fabricate antifouling ultrafiltration membrane for BSA separation. The X-ray photoelectron spectroscopy analysis of blend membranes revealed concentration of sulfobetaine groups at the membrane surfaces that endowed the membrane with higher hydrophilicity and better antifouling property. For the membrane with 8.0 wt% DMMSA–BMA copolymer concentration (No. 5), irreversible fouling has been considerably reduced and the flux recovery rate of the blend membrane reached as high as 82.8%. Furthermore, the blend membrane could effectively resist BSA fouling in a wide pH range from 4.0 to 8.0.  相似文献   

5.
In protein ultrafiltration (UF), the limiting flux phenomenon has been generally considered a consequence of the presence of membrane fouling or the perceived formation of a cake/gel layer that develops at high operating pressures. Subsequently, numerous theoretical models on gel/cake physics have been made to address how these factors can result in limiting flux. In a paradigm shift, the present article reestablishes the significance of osmotic pressure by examining its contribution to limiting flux in the framework of the recently developed free solvent osmotic pressure model. The resulting free-solvent-based flux model (FSB) uses the Kedem–Katchalsky model, film theory and the free solvent representation for osmotic pressure in its development. Single protein tangential-flow diafiltration experiments (30 kDa MWCO CRC membranes) were also conducted using ovalbumin (OVA, 45 kDa), bovine serum albumin (BSA, 69 kDa), and immuno-gamma globulin (IgG, 155 kDa) in moderate NaCl buffered solutions at pH 4.5, 5.4, 7 and 7.4. The membrane was preconditioned to minimize membrane fouling development during the experimental procedure. The pressure was randomly selected and flux and sieving were determined. The experimental results clearly demonstrated that the limiting flux phenomenon is not dominated by membrane fouling and the FSB model theoretically illustrates that osmotic pressure is the primary factor in limiting flux during UF. The FSB model provides excellent agreement with the experimental results while producing realistic protein wall concentrations. In addition, the pH dependence of the limiting flux is shown to correlate to the pH dependency of the specific protein diffusion coefficient.  相似文献   

6.
Understanding membrane fouling induced by dissolved organic matter (DOM) is of primary importance for developing effective fouling control and prevention strategies. In this work, we combine multivariate curve resolution–alternating least squares analysis with infrared attenuated total reflection mapping to explore the fouling process of microfiltration and ultrafiltration membranes caused by two typical DOMs, humic acid (HA) and bovine serum albumin (BSA). The spectral contributions of different foulants and the membrane substrate were successfully discriminated, thereby enabling the diagnosis of fouling origins. Membrane fouling caused by HA is more severe than that by BSA. Three periods, the initial adsorption stage, the equilibrium stage, and the accumulation stage, were observed for the HA‐induced fouling process. The integrated approach presented herein elegantly demonstrates the spatial and temporal characterization of membrane fouling processes, along with relative concentrations of the involved species, and suggests a promising perspective for understanding the interaction mechanisms between foulant species and membranes at the molecular level.  相似文献   

7.
Fouling phenomena of an anion-exchange membrane by bovine serum albumin (BSA) were investigated using current-voltage relation and electrical impedance spectroscopy (EIS) in this study. Electrochemical parameters of the Neosepta CMX cation- and AMX anion-exchange membrane (Tokuyama Corp., Japan) such as limiting current density (LCD), transport number, plateau length, and fraction of the conducting phase were measured. Fraction of the conducting phase of the ion-exchange membranes, calculated from the modified Sand equation, played an important role in determining the electrochemical parameters in the presence of foulants such as BSA. Fraction of the conducting phase of the AMX membrane significantly decreased in the presence of BSA. Two distinguishable slopes were observed in the over-LCD region of the current-voltage (I-V) curve, indicating the change of resistance. To further elucidate the phenomena, the electrical impedance spectroscopic study was carried out using the offset alternating current. It was found that the negatively charged loose fouling layer changed to the dense deposited BSA on the surface of the AMX membrane occurring along with enhanced water dissociation phenomena at the surface of the fouled AMX membrane at a higher current density. This result was confirmed by water dissociation experiments in a six-compartment electrodialysis cell.  相似文献   

8.
The conventional operating membrane of a laboratory membrane filtration process is to apply controlled transmembrane pressures to the retentate side of the membrane, with the permeate side open ended. Often the minimum transmembrane pressure available is sufficient to cause membrane fouling in a given system. A membrane rig has been built which monitors transmembrane pressure in increments of 0.001 bar and by pumping permeate at a specified rate controls the flux to be constant. The technique used allows sensitive detection of trace fouling. Under a variety of low flux conditions fouling was not observed and it was found to be useful to produce an experimentally related definition of two types of critical flux. In the first definition a `strong form' of critical flux exists if the flux of a suspension is identical to the flux of clean water at the same transmembrane pressure. In the second definition a `weak form' of the critical flux exists if the relationship between transmembrane pressure and flux is linear, but the slope of the line differs from that for clean water. This paper describes how the use of this operating mode led to the successful experimental measurements of critical fluxes for two colloidal silica suspensions, BSA solution and a baker's yeast suspension with a 50k MWCO membrane. These measurements could not be made successfully in constant-pressure mode. The paper also reports experimental evidence in support of a `strong form' of the critical flux for the filtration of X30 silica suspension. Finally, we report the effect of membrane pore size on critical flux measurements for the three types of feed fluids.  相似文献   

9.
Colloidal particles in the feed streams of membrane filtration processes control membrane fouling rate in many instances. In this study, the non-gelling colloidal Na-alginate and the gelling colloidal Ca-alginate are employed to investigate the significance of gel layer formation in membrane filtration processes in terms of contribution to membrane fouling and supplementary impurity removal. The results show that contribution of colloidal particles to membrane fouling depends on the gelling propensity of the colloids and the operational mode (constant pressure or constant flux) implemented. A small dose of either Na-alginate or Ca-alginate was found to greatly increase membrane fouling rate during constant pressure filtration. Both the resistance to removal by application of shear and the lower susceptibility of the concentration polarization layer to shear resulted in more severe fouling during constant flux filtration in the presence of Ca-alginate assemblages than in the presence of Na-alginate. Apparent channel sizes of the Ca-alginate gel layer were calculated from the material properties of the fouling layer. Incomplete catalase retention highlighted the likely heterogeneity in size of liquid transport pathways. Adsorption also contributed to the trapping of colloidal particles according to the retention behaviour of BSA by the Ca-alginate gel layer. Gel layer formation propensity should be seriously considered for the operation of membrane filtration processes. Two simple methods based on (i) a permeability recovery experiment and (ii) comparison of dead-end filtration behaviour with and without shear application are proposed for evaluation of the gelling propensity of colloidal dispersions.  相似文献   

10.
The main limitation of the ultrafiltration (UF) process identified in drinking water treatment is membrane fouling. Although adsorption of natural organic matter (NOM) is known to cause irreversible fouling, operating conditions also impact the degree of irreversible fouling. This study examined the impact of several operating parameters on fouling including flux, concentrate velocity in hollow fibers, backwash frequency, and transmembrane pressure. A hydrophilic cellulose derivative membrane and a hydrophobic acrylic polymer membrane were used to conduct these tests. Pilot testing showed that when short-term reversible fouling was limited during a filtration cycle by increasing the concentrate velocity, reducing the flux, and increasing the backwash frequency, the evolution of the membrane toward irreversible fouling could be controlled. It appeared that operating parameters should be adjusted to maintain the increase of transmembrane pressure below a certain limit, determined to be approximately 0.85 to 1.0 bar for the tested UF membrane, in order to minimize the rate of irreversible fouling. This threshold for transmembrane pressure was confirmed empirically by compiling data from over 36 pilot studies. Other testing results demonstrated that hydraulic backwash effectiveness decreased as the transmembrane pressure applied in the previous filtration cycle increased. Backwash efficiency in terms of membrane flux recovery after hydraulic backwash was reduced by 50% when the transmembrane pressure was increased from 0.4 bar to 1.4 bar.  相似文献   

11.
Na Cl O has been widely used to restore membrane flux in practical membrane cleaning processes, which would induce the formation of toxic halogenated byproducts. In this study, we proposed a novel heatactivated peroxydisulfate(heat/PDS) process to clean the membrane fouling derived from humic acid(HA). The results show that the combination of heat and PDS can achieve almost 100% recovery of permeate flux after soaking the HA-fouled membrane in 1 mmol/L PDS solution at 50 °C for 2 h, which is att...  相似文献   

12.
In this research, membrane life-time was evaluated by means of accelerated ageing experiments. A pressure pulse unit was used to perform the ageing experiments in an accelerated way. An experimental design has been set up and four ageing factors were varied at two levels. The four ageing factors studied were: fouling status of the membrane, cleaning agent concentration, magnitude of the back pulse and number of applied back pulses. The integrity of the membrane modules was evaluated by means of permeability testing, pressure decay tests and bubble tests. Also tensile tests were performed to investigate the mechanical properties of the membrane modules. The collected data was used for an analysis of variance to determine which ageing factors and which combination of ageing factors influence membrane life time. The analysis showed that the fouling status in combination with the number of applied pressure pulses were significant ageing factors. Additional tensile tests confirmed these results.  相似文献   

13.
A rapid characterization method was used to study protein fouling of cellulose acetate membrane during dead-end, in-line, constant flux microfiltration. Based on pressure-permeate volume profiles, two fouling phases could be identified and compared at different permeate fluxes. Using protein staining dyes, the model foulant (bovine serum albumin) was found to deposit on the upstream side of the membrane as a loose cake at its isoelectric point. The effects of solution pH on both the nature and extent of membrane fouling, and membrane cleaning were examined. To further understand and quantitatively analyze the fouling behavior, a combined mathematical model which took into account pore blocking, cake formation and pore constriction was developed based on existing fouling models. The data obtained by modeling was in good agreement with experimental fouling data. Theoretical analysis of data clearly indicated that cake formation was the main fouling mechanism. Using methods such as dynamic light scattering, the significant role of large protein aggregates in membrane fouling was confirmed. The dimer composition of protein did not change significantly during the fouling experiments, clearly indicating that smaller aggregates played less important role in membrane fouling.  相似文献   

14.
The fouling mechanism during dead-end microfiltration of bovine serum albumin (BSA) with porous glass membrane was investigated from the point of BSA adsorption onto the pore surface of membrane under the condition of pH 5.0 and ionic strength 0.01. The location of BSA retention was confirmed by comparing the filtration performance between dead-end mode and cross-flow mode. During the dead-end microfiltration BSA was retained only by the adsorption on the pore surface. The adsorption was irreversible and of multilayer type, which consists of the adsorption on clean pore surface, i.e. the primary adsorption, and that on preadsorbed pore surface, i.e. the secondary one. The adsorption isotherm was high affinity type. The adsorption rate was proportional to the feed rate of BSA, and the proportional coefficient was dependent on the adsorption process. The flux decline was correlated quantitatively with the amount of adsorbed BSA from the pore radius narrowing model by adsorption.  相似文献   

15.
A study on the variation of the permeate flux was performed in a stirred cell charged with microspheres, to investigate the effects of the stirrer speeds (300, 400, and 600 rpm) and the BSA concentration (0.1, 0.2, 0.4, and 0.8 g/L) under constant pressure. The permeate flux increased over time before the saturation point, but it began to decrease after that point. An increase of the BSA concentration and the stirrer speed resulted in the rapid increase of the permeate flux. This is contrary to the observation of the conventional filtration experiments using a stirred cell. A resistance-in-series model was employed for the modeling of the permeate flux. The cake resistance (R(c), induced by the concentration polarization of microspheres) and the fouling resistance (R(f), induced by the adsorption of BSA inside the membrane pore) must be considered simultaneously for the modeling. These modeling results were in good agreement with the experimental data. These can be applied to the special system considering both R(c) and R(f) as well as the general filtration systems using a stirred cell. Copyright 2000 Academic Press.  相似文献   

16.
Electrical impedance spectroscopy (EIS) techniques were used to gain insight into BSA fouling of the Neosepta CMX and AMX ion-exchange membranes (IEMs). EIS characterizations were made at concentrations above 0.1 M KCl because the conductance of the IEMs was higher than that of bulk solutions of concentration below 0.1 M KCl. Spectra, expressed in terms of dispersions of the conductance and capacitance with frequency, provided an enhanced indication of IEM fouling during separation processes. Bulk conductance measurements of the solution alone, membrane immersed in solution and fouled membrane immersed in solution showed good agreement with general theoretical predictions. Strong dispersions in capacitance were observed below 1 kHz for each of these configurations. Differences in the dispersions arising from fouling were identified by subtracting the impedance of the solution from those of unfouled and fouled IEMs in solution. The conductance and capacitance dispersions of fouled IEMs decreased with the accumulation of the BSA fouling layer on the surface.  相似文献   

17.
This study applies direct contact membrane distillation (DCMD) to concentrating the extract of traditional Chinese medicine (TCM). The trans-membrane flux under various operation conditions was measured in real-time during concentration process. By decoupling the factors affecting the trans-membrane flux decline, it was found that the observed flux decline throughout the process could be attributed to the membrane fouling, the reduction of water vapor pressure and the increase of transport resistance at feed side. Analysis of the combined factors was given to show in detail the mechanism of flux decline. Factors that may affect the flux level, such as feed velocity, feed temperature and pretreatment were experimentally examined. Gas bubbling or sparging was introduced into DCMD system for reducing membrane fouling, and it was found that both gas–liquid two-phase flow at the feed side and gas back-washing within membrane module are effective ways to control membrane fouling.  相似文献   

18.
The influence of the surface properties of chemically modified silicon nitride microsieves on the filtration of protein solutions and defatted milk is described in this research. Prior to membrane filtrations, an antifouling polymer based on poly(ethylene glycol), poly(TMSMA-r-PEGMA) was synthesized and applied on silicon-based surfaces like silicon, silicon nitride, and glass. The ability of such coating to repel proteins like bovine serum albumin (BSA) was confirmed by ellipsometry and confocal fluorescence microscopy. In BSA and skimmed milk filtrations no differences could be seen between unmodified and PEG-coated membranes (decreasing permeability in time). On the other hand, reduced fouling was observed with PEG-modified microsieves in combination with backpulsing and air sparging.  相似文献   

19.
Many studies have been undertaken to understand the fouling of the ultrafiltration membranes in drinking water treatment. Physico-chemical fouling of membranes depends on characteristics of the raw water and membrane surface properties. In the case of Biwa lake, some chemical parameters as Si and Fe concentrations change with temperature (season) causing irreversible fouling. While some exits on the influence of the particle mineralogy on the fouling, little work has been developed to elucidate the relation between the physicochemical complexity of the cake and the fouling. Generally clays or oxides are known to lead to a reversible fouling. In this work, the interactions between a UF organic membrane with minerals leading to a hardly reversible fouling are studied. In the case of the Biwa lake water, fouling of ultrafiltration membranes results from the formation of a Si-rich ferric gel directly deposited on the membrane surface and a secondary allophanic gel layer at a bigger distance. The deposit nature and the membrane/cake interactions were studied using infra-red, X-ray diffraction, Al and Si NMR and EXAFS technics. The effect of mineral particles, especially ferric oxides associated with silica, has been demonstrated. The formation of Fe---Si gel directly on the membrane surface is mainly responsible for the fouling. The change of these particles is less negative than the membrane surface. The structure of such a material is complex. The low permeability of the gel is at the prime origin of the fouling.  相似文献   

20.
The growing attention to forward osmosis (FO) membrane processes from various disciplines raises the demand for systematic research on FO membrane fouling. This study investigates the role of various physical and chemical interactions, such as intermolecular adhesion forces, calcium binding, initial permeate flux, and membrane orientation, in organic fouling of forward osmosis membranes. Alginate, bovine serum albumin (BSA), and Aldrich humic acid (AHA) were chosen as model organic foulants. Atomic force microscopy (AFM) was used to quantify the intermolecular adhesion forces between the foulant and the clean or fouled membrane in order to better understand the fouling mechanisms. A strong correlation between organic fouling and intermolecular adhesion was observed, indicating that foulant–foulant interaction plays an important role in determining the rate and extent of organic fouling. The fouling data showed that FO fouling is governed by the coupled influence of chemical and hydrodynamic interactions. Calcium binding, permeation drag, and hydrodynamic shear force are the major factors governing the development of a fouling layer on the membrane surface. However, the dominating factors controlling membrane fouling vary from foulant to foulant. With stronger intermolecular adhesion forces, hydrodynamic conditions for favorable foulant deposition leading to cake formation are more readily attained. Before a compact cake layer is formed, the fouling rate is affected by both the intermolecular adhesion forces and hydrodynamic conditions. However, once the cake layer forms, all three foulants have very similar flux decline rates, and further changes in hydrodynamic conditions do not influence fouling behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号