首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recently discovered photo‐activated adenylyl cyclase (mPAC from Microcoleus chthonoplastes) is the first PAC that owes a light‐, oxygen‐ and voltage‐sensitive (LOV) domain for blue‐light sensing. The photoreaction of the mPAC receptor was studied by time‐resolved UV/vis and light‐induced Fourier transform infrared (FTIR) absorption difference spectroscopy. The photocycle comprises of the typical triplet state LOV715 and the thio‐adduct state LOV390. While the adduct state decays with a time constant of 8 s, the lifetime of the triplet state is with 656 ns significantly shorter than in all other reported LOV domains. The light‐induced FTIR difference spectrum shows the typical bands of the LOV390 and LOV450 intermediates. The negative S‐H stretching vibration at 2573 cm?1 is asymmetric suggesting two rotamer configurations of the protonated side chain of C194. A positive band at 3632 cm?1 is observed, which is assigned to an internal water molecule. In contrast to other LOV domains, mPAC exhibits a second positive feature at 3674 cm?1 which is due to the O‐H stretch of a second intrinsic water molecule and the side chain of Y476. We conclude that the latter might be involved in the dimerization of the cyclase domain which is crucial for ATP binding.  相似文献   

2.
A blue light-inducible phosphodiesterase (PDE) activity, specific for the hydrolysis of cyclic di-GMP (c-di-GMP), has been identified in a recombinant protein from Synechococcus elongatus. Blue light (BL) activation is accomplished by a light, oxygen, voltage (LOV) domain, found in plant phototropins and bacterial BL photoreceptors. The genome of S. elongatus contains two genes coding for proteins with LOV domains fused to EAL domains (SL1 and SL2). In both cases, a GGDEF motif is placed in between the LOV and the EAL motifs. Such arrangement is frequently found with diguanylate-cyclase (DGC) functions that form c-di-GMP. Cyclic di-GMP acts as a second messenger molecule regulating biofilm formation in many microbial species. Both enzyme activities modulate the intracellular level of this second messenger, although in most proteins only one of the two enzyme functions is active. Both S. elongatus LOV-GGDEF-EAL proteins were expressed in full length or as truncated proteins. Only the SL2 protein, expressed as a LOV-GGDEF-EAL construct, showed an increase of PDE activity upon BL irradiation, demonstrating this activity for the first time in a LOV-domain protein. Addition of GTP or c-di-GMP did not affect the observed enzymatic activity. In none of the full-length or truncated proteins was a DGC activity detected.  相似文献   

3.
The open reading frame PP2739 from Pseudomonas putida KT2440 encodes a 151 amino acid protein with sequence similarity to the LOV domains of the blue-light sensitive protein YtvA from Bacillus subtilis and to the phototropins (phot) from plants. This sensory box LOV protein, PpSB2-LOV, comprises a LOV core, followed by a C-terminal segment predicted to form an alpha-helix, thus constituting a naturally occurring paradigm for an extended LOV construct. The recombinant PpSB2-LOV shows a photochemistry very similar to that of YtvA and phot-LOV domains, yet the lifetime for the recovery dark reaction, taurec=114 s at 20 degrees C, resembles that of phot-LOV domains (5-300 s) and is much faster than that of YtvA or YtvA-LOV (>3000 s). Time-resolved optoacoustics reveals phot-like, light-driven reactions on the ns-micros time window with the sub-nanosecond formation of a flavin triplet state (PhiT=0.46) that decays into the flavin-cysteine photoadduct with 2 micros lifetime (Phi390=0.42). The fluorescence spectrum and lifetime of the conserved W97 resembles the corresponding W103 in full-length YtvA, although the quantum yield, PhiF, is smaller (about 55% of YtvA) due to an enhanced static quenching efficiency. The anisotropy of W97 is the same as for W103 in YtvA (0.1), and considerably larger than the value of 0.06, found for W103 in YtvA-LOV. Different to YtvA and YtvA-LOV, the fluorescence for W97 becomes larger upon photoproduct formation. These data indicate that W97 is located in a similar environment as W103 in full-length YtvA, but undergoes larger light-driven changes. It is concluded that the protein segment located C-terminally to the LOV core (analogous to an interdomain linker) is enough to confer to the conserved tryptophan the fluorescence characteristics typical of full-length YtvA. The larger changes experienced by W97 upon light activation may reflect a larger conformational freedom of this protein segment in the absence of a second domain.  相似文献   

4.
Light, oxygen, or voltage (LOV) domains constitute a new class of photoreceptor proteins that are sensitive to blue light through a noncovalently bound flavin chromophore. Blue-light absorption by the LOV2 domain initiates a photochemical reaction that results in formation of a long-lived covalent adduct between a cysteine and the flavin cofactor. We have applied ultrafast spectroscopy on the photoaccumulated covalent adduct state of LOV2 and find that, upon absorption of a near-UV photon by the adduct state, the covalent bond between the flavin and the cysteine is broken and the blue-light-sensitive ground state is regained on an ultrafast time scale of 100 ps. We thus demonstrate that the LOV2 domain is a reversible photochromic switch, which can be activated by blue light and deactivated by near-UV light.  相似文献   

5.
The YtvA protein, which is one of the proteins that comprises the network carrying out the signal transfer inducing the general stress response in Bacillus subtilis, is composed of an N-terminal LOV domain (that binds a flavin [FMN]) and a C-terminal STAS domain. This latter domain shows sequence features typical for a nucleotide (NTP) binding protein. It has been proposed (FEBS Lett., 580 [2006], 3818) that BODIPY-GTP can be used as a reporter for nucleotide binding to this site and that activation of the LOV domain by blue light is reflected in an alteration of the BODIPY-GTP fluorescence. Here we confirm that BODIPY-GTP indeed binds to YtvA, but rather nonspecifically, and not limited to the STAS domain. Blue-light modulation of fluorescence emission of YtvA-bound BODIPY-GTP is observed both in the full-length YtvA protein and in a truncated protein composed of the LOV-domain plus the LOV-STAS linker region (YtvA(1-147)) as a light-induced decrease in fluorescence emission. The isolated LOV domain (i.e. without the linker region) does not show such BODIPY-GTP fluorescence changes. Dialysis experiments have confirmed the blue-light-induced release of BODIPY-GTP from YtvA.  相似文献   

6.
Flavin‐based photoreceptor proteins of the LOV (light, oxygen and voltage) superfamily are ubiquitous and appear to be essential blue‐light sensing systems not only in plants, algae and fungi, but also in prokaryotes, where they are represented in more than 10% of known species. Despite their broad occurrence, only in few cases LOV proteins have been correlated with important phenomena such as bacterial infectivity, selective growth patterns or/and stress responses; nevertheless these few known roles are helping us understand the multiple ways by which prokaryotes can exploit these soluble blue‐light photoreceptors. Given the large number of sequences now deposited in databases, it becomes meaningful to define a signature for bona fide LOV domains, a procedure that facilitates identification of proteins with new properties and phylogenetic analysis. The latter clearly evidences that a class of LOV proteins from alpha‐proteobacteria is the closest prokaryotic relative of eukaryotic LOV domains, whereas cyanobacterial sequences cluster with the archaeal and the other bacterial LOV domains. Distance trees built for LOV domains suggest complex evolutionary patterns, possibly involving multiple horizontal gene transfer events. Based on available data, the in vivo relevance and evolution of prokaryotic LOV is discussed.  相似文献   

7.
8.
Metagenomes from various environments were screened for sequences homologous to light, oxygen, voltage (LOV)-domain proteins. LOV domains are flavin binding, blue-light (BL)-sensitive photoreceptors present in 10-15% of deposited prokaryotic genomes. The LOV domain has been selected, since BL is an ever present and sometimes harmful environmental factor for microbial communities. The majority of the metagenome material originated from the Sargasso Sea Project and from open-ocean sampling. In total, more than 40 million open reading frames were investigated for LOV-domain sequences. Most sequences were identified from aquatic material, but they were also found in metagenomes from soil and extreme environments, e.g. hypersaline ponds, acidic mine drainage or wastewater treatment facilities. A total of 578 LOV domains was assigned by three criteria: (1) the highly conserved core region, (2) the presence of minimally 14 essential amino acids and (3) a minimal length of 80 amino acids. More than three quarters of these identified genes showed a sequence divergence of more than 20% from database-deposited LOV domains from known organisms, indicating the large variation of this photoreceptor motif. The broad occurrence of LOV domains in metagenomes emphasizes their important physiological role for light-induced signal transduction, stress adaptation and survival mechanisms.  相似文献   

9.
Phototropin is a blue-light photoreceptor in plants that mediates phototropism, chloroplast relocation, stomata opening and leaf expansion. Phototropin molecule has two photoreceptive domains named LOV1 (light-oxygen-voltage) and LOV2 in the N-terminus and a serine/threonine kinase domain in the C-terminus, and acts as a blue light-regulated kinase. Each LOV domain binds a flavin mononucleotide as a chromophore and undergoes unique cyclic reactions upon blue-light absorption that comprises a cysteinyl-flavin adduct formation through a triplet-excited state and a successive adduct break to revert to the initial ground state. The molecular reactions underlying the photocycle are reviewed and one of the probable molecular schemes is presented. Adduct formation alters the secondary protein structure of the LOV domains. This structural change could be transferred to the linker between the kinase domain and involved in the photoregulation of the kinase activity. The structural changes as well as the oligomeric structures seem to differ between LOV1 and LOV2, which may explain the proposed roles of each domain in the photoregulation of the kinase activity. The photoregulation mechanism of phototropin kinase is reviewed and discussed in reference to the regulation mechanism of protein kinase A, which it resembles.  相似文献   

10.
An absorption and emission spectroscopic characterisation of the combined wild-type LOV1-LOV2 domain string (abbreviated LOV1/2) of phot from the green alga Chlamydomonas reinhardtii is carried out at pH 8. A LOV1/2-MBP fusion protein (MBP=maltose binding protein) and LOV1/2 with a His-tag at the C-terminus (LOV1/2-His) expressed in an Escherichia coli strain are investigated. Blue-light photo-excitation generates a non-fluorescent intermediate photoproduct (flavin-C(4a)-cysteinyl adduct with absorption peak at 390 nm). The photo-cycle dynamics is studied by dark-state absorption and fluorescence measurement, by following the temporal absorption and emission changes under blue and violet light exposure, and by measuring the temporal absorption and fluorescence recovery after light exposure. The fluorescence quantum yield, phi(F), of the dark adapted samples is phi(F)(LOV1/2-His) approximately 0.15 and phi(F)(LOV1/2-MBP) approximately 0.17. A bi-exponential absorption recovery after light exposure with a fast (in the several 10-s range) and a slow component (in the near 10-min range) are resolved. The quantum yield of photo-adduct formation, phi(Ad), is extracted from excitation intensity dependent absorption measurements. It decreases somewhat with rising excitation intensity. The behaviour of the combined wildtype LOV1-LOV2 double domains is compared with the behaviour of the separate LOV1 and LOV2 domains.  相似文献   

11.
The mechanism for signal transduction from the LOV-domains toward the kinase region of phototropin is still not well understood. We have performed molecular dynamics (MD) simulations and CONCOORD calculations on the LOV2 domain of Adiantum capillus-veneris, with the goal to detect possible differences between the two forms of the LOV domain which may not show up in the static crystal structures. Since no such clear differences are found in the MD simulations also, we suggest that the real, biologically active conformation of the LOV domain within the whole phototropin is different from the crystal structure of the isolated LOV domains. The MD simulations do offer, however, insight into details of the dynamics of the dark and illuminated LOV domains, which are discussed in the light of recent experiments.  相似文献   

12.
The Bacillus subtilis protein YtvA, related to plant phototropins (phot), binds flavin mononucleotide (FMN) within the N‐terminal light, oxygen and voltage (LOV) domain. The blue light‐triggered photocycle of YtvA and phot involves the reversible formation of a covalent photoadduct between FMN and a cysteine (cys) residue. YtvA contains a single tryptophan, W103, localized on the LOV domain and conserved in all phot‐LOV domains. In this study, we show that the fluorescence parameters of W103 in YtvA‐LOV are markedly different from those observed in the full‐length YtvA. The fluorescence quantum yields are ca 0.03 and 0.08, respectively. In YtvA‐LOV, the maximum is redshifted (ca 345 vs 335 nm) and the average fluorescence lifetime shorter (2.7 vs 4.7 ns). These data indicate that W103 is located in a site of tight contact between the two domains of YtvA. In the FMN‐cys adduct, selective excitation of W103 at 295 nm results in minimal changes of the fluorescence parameters with respect to the dark state. On 280 nm excitation, however, there is a detectable decrease in the fluorescence emitted from tyrosines, with concomitant increase in W103 fluorescence. This effect is reversible in the dark and might arise from a light‐regulated energy transfer process from a yet unidentified tyrosine to W103.  相似文献   

13.
BLUF and LOV are blue-light sensor domains that possess flavin as a common chromophore but exhibit distinct photoreactions. Ile66 located in the BLUF domain of a cyanobacterial photosensor protein, TePixD, was replaced with Cys to mimic the LOV domain. Light-induced Fourier transform infrared spectra of the I66C TePixD showed that a flavin-Cys adduct, typical of the photoinduced intermediates of LOV domains, was formed in the I66C BLUF domain. This result demonstrates that different types of flavin photoreactions can be realized in the same domain if key amino acids are properly arranged near the flavin and the domain structure itself is not a crucial factor to determine the photoreaction type.  相似文献   

14.
Detection of blue light (BL) via flavin‐binding photoreceptors (Fl‐Blues) has evolved throughout all three domains of life. Although the main BL players, that is light, oxygen and voltage (LOV), blue light sensing using flavins (BLUF) and Cry (cryptochrome) proteins, have been characterized in great detail with respect to structure and function, still several unresolved issues at different levels of complexity remain and novel unexpected findings were reported. Here, we review the most prevailing riddles of LOV‐based photoreceptors, for example: the relevance of water and/or small metabolites for the dynamics of the photocycle; molecular details of light‐to‐signal transduction events; the interplay of BL sensing by LOV domains with other environmental stimuli, such as BL plus oxygen‐mediating photodamage and its impact on microbial lifestyles; the importance of the cell or chromophore redox state in determining the fate of BL‐driven reactions; the evolutionary pathways of LOV‐based BL sensing and associated functions through the diverse phyla. We will discuss major novelties emerged during the last few years on these intriguing aspects of LOV proteins by presenting paradigmatic examples from prokaryotic photosensors that exhibit the largest complexity and richness in associated functions.  相似文献   

15.
Phototropins are UV-A/blue light photoreceptors containing two flavin mononucleotide (FMN)-binding domains, light, oxygen and voltage (LOV)1 and LOV2, of which LOV2 is more sensitive toward light and more important for the physiological response compared with LOV1. Some physiological responses are plant phototropism, chloroplast migration and stomatal opening. Oat phototropin 1 together with light-dependent autophosphorylation shows a reduced electrophoretic mobility and reduced immunoreaction against a heterologous antiserum; both effects were suggested to be caused by phosphorylation at the same sites (M. Salomon, E. Knieb, T. von Zeppelin and W. Rudiger [2003] Biochemistry 42, 4217-4225). In this study, we show that both effects can be separated from each other: at low temperature, reduced immunoreaction preceded the mobility shift, and irradiation with UV-C light led to the mobility shift without the loss of immunoreactivity. We demonstrated that UV-C light at 280 nm, which does not match any absorption maximum of FMN, leads to autophosphorylation of phototropin. It is hypothesized that UV-C light causes differential activation of the LOV domains via energy transfer from aromatic amino acids.  相似文献   

16.
Phototropin is a blue-light receptor involved in the phototropic response of higher plants. The photoreceptor comprises a protein kinase domain and two structurally similar flavin-mononucleotide (FMN) binding domains designated LOV1 and LOV2. Blue-light irradiation of recombinant LOV2 domains induces the formation of a covalent adduct of the thiol group of a functional cysteine in the cofactor-binding pocket to C(4a) of the FMN. Cysteine-to-alanine mutants of LOV domains are unable to form that adduct but generate an FMN radical upon illumination. The recombinant C450A mutant of the LOV2 domain of Avena sativa phototropin was reconstituted with universally and site-selectively (13)C-labeled FMN and the (13)C NMR signals were unequivocally assigned. (13)C NMR spectra were acquired in darkness and under blue-light irradiation. The chemical shifts and the coupling patterns of the signals were not affected by irradiation. However, under blue-light exposure, exceptionally strong nuclear-spin polarization was developed in the resonances belonging to certain carbons of the FMN's isoalloxazine moiety. An enhancement of the NMR absorption was observed for the signals of C(5a), C(7), and C(9). NMR lines in emission were detected for the signals belonging to C(2), C(4), C(4a), C(6), C(8), and C(9a). The signal of C(10a) remained in absorption but was slightly attenuated. In contrast, the intensities of the NMR signals belonging to the carbons of the ribityl side chain of FMN were not affected by light. The observation of spin-polarized (13)C-nuclei in the NMR spectra of the mutant LOV2 domain is clear evidence for radical-pair intermediates in the reaction steps following optical sample excitation.  相似文献   

17.
The blue-light sensitive photoreceptor, phototropin, is a flavoprotein which regulates the phototropism response of higher plants. The photoinduced triplet state and the photoreactivity of the flavin-mononucleotide (FMN) cofactor in two LOV domains of Avena sativa, Adiantum capillus-veneris, and Chlamydomonas reinhardtii phototropin have been studied by time-resolved electron paramagnetic resonance (EPR) and UV-vis spectroscopy at low temperatures (T < or = 80 K). Differences in the electronic structure of the FMN as reflected by altered zero-field splitting parameters of the triplet state could be correlated with changes in the amino acid composition of the binding pocket in wild-type LOV1 and LOV2 as well as in mutant LOV domains. Even at cryogenic temperatures, time-resolved EPR experiments indicate photoreactivity of the wild-type LOV domains, which was further characterized by UV-vis spectroscopy. Wild-type LOV1 and LOV2 were found to form an adduct between the FMN cofactor and the functional cysteine with a yield of 22% and 68%, respectively. The absorption maximum of the low-temperature photoproduct of wild-type LOV2 is red-shifted by about 15 nm as compared with the FMN C(4a)-cysteinyl adduct formed at room temperature. In light of these observations, we discuss a radical-pair reaction mechanism for the primary photoreaction in LOV domains.  相似文献   

18.
Elucidation of the signal‐transmission pathways between distant sites within proteins is of great importance in medical and bioengineering sciences. The use of optical methods to redesign protein functions is emerging as a general approach for the control of biological systems with high spatiotemporal precision. Here we report the detailed thermodynamic and kinetic characterization of novel chimeric light‐regulated Tet repressor (TetR) switches in which light modulates the TetR function. Light absorbed by flavin mononucleotide (FMN) generates a signal that is transmitted to As‐LOV and YtvA‐LOV fused TetR proteins (LOV=light–oxygen–voltage), in which it alters the binding to tetracycline, the TetR ligand. The engineering of light‐sensing protein modules with TetR is a valuable tool that deepens our understanding of the mechanism of signal transmission within proteins. In addition, the light‐regulated changes of drug binding that we describe here suggest that engineered light‐sensitive proteins may be used for the development of novel therapeutic strategies.  相似文献   

19.
Conformational dynamics of LOV2 domain of phototropin, a plant blue light photoreceptor, is studied by the pulsed laser induced transient grating (TG) technique. The TG signal of LOV2 without the linker part to the kinase domain exhibits the thermal grating signal due to the heat releasing from the excited state and a weak population grating by the adduct formation. The diffusion coefficients of the adduct product after forming the chemical bond between the chromophore and Cys residue are found to be slightly smaller than that of the reactant, which implies that the core shrinks slightly on the adduct formation. After that change, no significant conformational change was observed. On the other hand, the signal of LOV2 with the linker part to the kinase domain clearly shows very different diffusion coefficients between the original and the adduct species. The large difference indicates significant global conformational change of the protein moiety upon the adduct formation. More interestingly, the diffusion coefficient is found to be time-dependent in the observation time range. The dynamics representing the global conformational change is a clear indication of a spectral silent intermediate between the excited triplet state and the signaling product. From the temporal profile analysis of the signal, the rate of the conformational change is determined to be 2 ms.  相似文献   

20.
The blue light photoreceptor phototropin mediates crucial processes in plants leading to optimization of photosynthesis. Phototropin comprises two flavin mononucleotide-binding LOV (light-, oxygen-, or voltage-sensitive) domains. The LOV domains undergo a photocycle upon illumination, in which two intermediates have been detected by UV/Vis spectroscopy. The triplet excited state of flavin is formed and decays within a few microseconds into a photoadduct with an adjacent cysteine, which represents the signaling state of the LOV domain. For bond formation of the photoadduct, several reaction pathways have been proposed, but evidence for an intermediate at ambient conditions has not been found. Here, we performed nanosecond time-resolved UV/Vis spectroscopy on the phototropin-LOV1 domain from Chlamydomonas reinhardtii. We designed a flow cell which was used to efficiently replace the sample after each photoexcitation because the cycling time is in the order of hundreds of seconds. The comparison of difference spectra of the wild type with those of the C57S mutant that produces only the triplet excited state revealed the existence of an additional intermediate between the triplet and the adduct state. This intermediate exhibits spectral properties similar to a neutral flavin radical. This finding supports a reaction mechanism involving a neutral radical pair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号