首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Liquid–liquid equilibrium tie line data were determined for three quaternary systems water + ethanol + diethyl carbonate+n-heptane, water + ethanol + 1,1-dimethylethyl methyl ether + diethyl carbonate, and water + 1,1-dimethylethyl methyl ether + diethyl carbonate+n-heptane at 298.15 K and atmospheric pressure. The experimental liquid–liquid equilibria results have been correlated using a modified UNIQUAC model and an extended UNIQUAC model, both with multicomponent interaction parameters in addition to the binary ones.  相似文献   

2.
Experimental tie-line data for two ternary systems, water + dimethyl carbonate + methanol or ethanol, and two quaternary systems, water + dimethyl carbonate + toluene + methanol or ethanol were investigated at 298.15 K and atmospheric pressure. The experimental liquid–liquid equilibrium data were correlated using a modified UNIQUAC activity coefficient model with binary and ternary as well as quaternary parameters. The calculated results were further compared with those obtained from an extended UNIQUAC model.  相似文献   

3.
4.
Liquid–liquid equilibrium (LLE) date for the ternary systems of {water?+?1-propanol?+?dibutyl ether (DBE)} and (water?+?1-butanol?+?DBE) were determined at T?=?(293.15, 303.15, 308.15) K under atmospheric pressure. Distribution coefficients and separation factors of 1-propanol in the mixtures were calculated and are discussed. The influence of temperature on the liquid phase regions was analyzed. In addition, the experimental values were correlated well with the modified and extended UNIQUAC models; the modified UNIQUAC model represents the data better than the extended UNIQUAC model.  相似文献   

5.
In this paper, the liquid?Cliquid equilibria for 1-propanol, 2-propanol or 2-methyl-2-propanol + disodium hydrogen citrate aqueous two-phase systems at 298.15 K were studied. The experimental binodal curves at 298.15?K are reported, and the parameters of the Merchuk equation, modified as a nonlinear function of mixed solvent properties and used for the simultaneous correlation of the experimental binodal data. Moreover, the salting-out ability of different salts and different alcohols with different anions is discussed. Additionally, experimental tie-line data are reported at 298.15 K. The generalized electrolyte-NRTL model of the mixed solvent electrolyte systems (e-NRTL) satisfactorily used for the correlation of the tie-line compositions; restricted binary interaction parameters were also obtained.  相似文献   

6.
Stability constants, free energies, and enthalpies and entropies of the complexation of L-alanine methyl ester hydrochloride (L-Ala-HCl), L-phenylalanine methyl ester hydrochloride (L-Phe-HCl), and valine methyl ester hydrochloride (L-Val-HCl) with 15-crown-5 (15C5), benzo-15-crown-5 (B15C5), 18-crown-6 (18C6), benzo-18-crown-6 (B18C6), dicyclohexano-18-crown-6 (DC18C6), and dicyclohexano-24-crown-8 (DC24C8) in methanol are reported for 20°C. No significant variation in the stability constants and free energies of complexation is observed, indicating that the various crown ethers are poorly selective in binding the amino acids. However, the nature of the crown ether and the amino acid and their pattern of substitution cause a remarkable variation in the enthalpies and entropies of complexation. This indicates a strong enthalpy–entropy compensation effect. The enthalpy–entropy compensation effect for the crown ether complexes of the amino acid methyl ester hydrochlorides reported herein is compared with that of the crown ethers complexes of the amino alcohols and the free amino acid. It is found that the enthalpy–entropy compensation effect holds equally for the three classes of complexes.  相似文献   

7.
8.
9.
Phase equilibria of methanol?+?toluene?+?hexane ternary systems at (278.15, 283.15, 288.15 and 293.15) K at atmospheric pressure were investigated. The influence of temperature on the liquid–liquid equilibrium is discussed. All chemicals were quantified using gas chromatograph with a thermal conductivity detector coupled to a ChemStation and nitrogen as gas carrier, their mass fractions were higher than 0.999. From literature are found two articles from the same system at different temperatures studied here. Experimental data are compared with literature values. Values calculated using the NRTL and UNIQUAC equations are compared with the experimental data and it is found that the UNIQUAC equation fitted the experimental data better than the NRTL model for this ternary system.  相似文献   

10.
Liquid–liquid equilibria of the methanol + ethylbenzene + methylcyclohexane ternary system are reported at 278.15, 283.15, and 293.15 K. The effect of the temperature on the liquid–liquid equilibrium is discussed. All chemical concentrations were quantified by gas chromatography using a thermal conductivity detector. Experimental data for the ternary system are compared with values calculated by the NRTL and UNIQUAC equations. It was found that both equations gave comparable quality representations of the experimental data for this ternary system. Distribution curves were also analyzed. Data for the ternary system is available from the literature at 303.15 K.  相似文献   

11.
Isothermal vapor–liquid equilibria (VLE) for mixtures containing 2-propanol + tetrahydrofuran + 1-chlorobutane have been measured using a modified version of a Boublik–Benson still at 25°C. A test of thermodynamic consistency, like the McDermott–Ellis method was applied to the activity coefficients. Excess molar Gibbs free energies were calculated over the entire range composition. Different expressions existing in the literature were used to predict activity coefficients.  相似文献   

12.
Liquid–liquid equilibrium (LLE) data were measured at 298.15 K and atmospheric pressure for the quaternary [water + methanol + ethyl methyl carbonate (EMC) + octane] and (water + ethanol + EMC + octane) systems, and relevant ternary (water + methanol + EMC), (water + ethanol + EMC), (water + ethanol + octane) and (water + EMC + octane) systems. The modified and extended UNIQUAC activity coefficient models were employed to correlate the experimental LLE results, which were also correlated by the Othmer–Tobias equation. The separation factors were calculated from the LLE data. The extracting selectivity of methanol and ethanol from aqueous solutions using pure EMC and mixed solvent (EMC + octane) was studied.  相似文献   

13.
14.
Solubilities in the CuSO4 (CuCl2, Cu(NO3)2)–NaHCOO–H2O systems are studied at 25°C using the isothermal sections method. Crystallization regions of copper(II) formate mono- and dihydrate are elucidated. It is proved that copper(II) formate can be synthesized in CuAn2 + 2NaHCOO ? Cu(HCOO)2 + 2NaAn–H2O quaternary reciprocal systems using the conversion method.  相似文献   

15.
Abstract

The measurements of dielectric constant of a number of binary and ternary mixtures of butyl acetate, butyl alcohol, quinoline, pyridine and o-cresol in carbon tetrachloride and benzene have been made at 35°C. Molecular interaction of these aromatic compounds have been studied in terms of variations in parameters; ‘dipole moment’ (μ), ‘interaction dielectric constant’ (δ?), ‘molecular polarisation’ (P) and ‘excess polarisation’ (PE ). The dipole moment has been calculated using Hysken's method, the interaction dielectric constant utilizing the equation of ideal mole fraction law and excess polarisation using the theory of Erap and Glasstone. The positive values of δ?12 for binary mixtures of quinoline and butyl acetate in carbon tetrachloride and benzene have been attributed to the formation of charge transfer complexes. The negative values of δ?12 and δ?123 with pyridine suggest that charge transfer interaction is weakened by pyridine in its binary and ternary mixtures. The plot between the excess polarisation value and the product of mole fractions yielded a straight line passing through the origin showing the formation of charge transfer complexes.  相似文献   

16.
17.
Liquid–liquid equilibria of the methanol + toluene + methylcyclohexane ternary system at 278.15, 283.15, 288.15, 293.15, 298.15 and 303.15 K are reported. The effect of the temperature on liquid–liquid equilibrium is discussed. Data for the ternary system is available from the literature at T = 298 K. All chemicals were quantified by gas chromatography using a thermal conductivity detector. Experimental data for the ternary system are compared with values calculated by the NRTL and UNIQUAC equations. It is found that the UNIQUAC and NRTL models provide similar good correlations of the solubility curve at these six temperatures.  相似文献   

18.
The enthalpies of dilution for aqueous solutions of [Co(en)3]Br3, [Co(pn)3]Cl3, and [Co(tn)3]Cl3 (where en = 1,2-diaminoethane, pn = 1,2-diaminopropane, and tn = 1,3-diaminopropane) have been measured at 25°C, and up to m = 1 mol-kg–1, using an isoperibol calorimeter by the long-jump method. Relative apparent molar enthalpies L have been extracted as an empirical equation relating L and m. Previously reported experimental data and theoretical predictions in the restricted primitive model (RPM) for 3:1 and 1:3 aqueous electrolytes are shown together with the new experimental material.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号