共查询到20条相似文献,搜索用时 125 毫秒
1.
用气相色谱以程序升温方式分析了重整生成汽油,并将各组分升温保留时间转换为恒温保留指数。以各组分在OV-1和SE-54固定相上,同一柱温下的保留指数差及在各柱上的温度系数为三因素进行斜交因子分析和本征矢量旋转,给出了重整生成汽油样品中烷烃、烯烃、环烷烃、芳烃值,经气相色谱-质谱分析验证了结果的正确性,为重整成成汽油样品中烃的类别分析提供了一种新方法。 相似文献
2.
1 引 言为了提高汽油的辛烷值及抗爆性能,甲基叔丁基醚(MTBE)可作为一种重要的调和组分。但由于其对健康的不良影响,其含量应严格地进行控制。以往气相色谱法中较准确的内标法,由于对相对校正因子的计算不准确而使定量的准确度较差,低含量时结果偏高。因而开发一种更准确的分析方法势在必行。2 实验部分2.1 仪器与试剂 HP6890plus型气相色谱仪及具程序升温功能的其它型号的气相色谱仪均可,具一个十通切换阀、FID检测器、HP6890化学工作站。极性预分离柱:0.56 m×0.35 mm i.d 内填充为20%(m/m)TCEP/Chromosorb 0.1 mm;非极性分离… 相似文献
3.
4.
5.
保留指数定性分析裂解汽油轻组分 总被引:1,自引:0,他引:1
利用Kovats保留指数和标准样品对裂解汽油轻组分中的43种烃进行了定性,在柱温40℃的51mOV-101弹性石英毛细管柱上获得了良好的分离效果,并测定了各组分的含量,部分烃标样用联胺还原酮法来合成。 相似文献
6.
在程序升温条件下,用气相色谱法分析烷基化汽油样品,将各组分的程序升温保留时间转化的恒温保留指数。根据各组分在SE-54固定相和OV-1固定相上的气相色谱保留指数差对其进行类别定性。利用色谱-质谱分析法进行了验证,结果表明该方法简便可行。 相似文献
8.
9.
毛细管气相色谱法测定炼厂气中单体烃组分的含量 总被引:1,自引:1,他引:1
采用PLOT/Al2O3石英毛细管气相色谱柱和氢火焰离子化检测器,建立了炼厂气中单体烃组分含量测定的毛细管气相色谱法,当炼厂气中单体烃组分的含量大于或等于2.1%时,RSD≤0.95%,当炼厂气中单体烃组分的含量为0.5%-2.1%时,RSD为0.95%-10.0%,当炼厂气中单体烃组分的含量为0.2%-0.5%时,RSD为10.0%-25.0%,该方法对单体烃组分的测定结果与行业标准SH/T0230-92《液化石油气组成测定法》的测定结果基本一致。 相似文献
10.
气体色谱分析的多图谱归一定量法和气体组分的相对校正因子 总被引:1,自引:1,他引:1
本文报道一种扩展的气相色谱归一化定量分析方法,使两台或两台以上色谱仪对同一样品的诸多组分所完成的多张色谱力痛应用归一定量法进行计算,从而在进行多组分测定(尤其是气体样品的分析)时大大减少工作量,本方法的关键是样品中某一组分在多张图谱中均有分离很好的峰。 相似文献
11.
采用分子模拟高通量筛选的方法研究了6013种实验已经合成的金属-有机框架(MOFs)对天然气五元混合物(CH4,C2H6,C3H8,H2S和CO2)中H2S和CO2的吸附分离性能.为了综合吸附量和选择性这两项指标,我们首先比较了三种权衡方法[权衡α法(Tradeoff between SH2S+CO2/C1-C3 and NH2S+CO2,TSN),标准值法(Standard normal method,SNM)和权衡β法(Tradeoff between selectivity and capacity,TSC)].接着,针对四种MOF描述符[最大孔径(LCD),孔隙率(φ),比表面积(VSA)和吸附热(Qst0)],通过Pearson相关系数分析了每种描述符分别对三种权衡变量的相关性,结果显示TSC法与四种MOF描述符的相关性最佳.然后,使用多元线性回归方法定量地分析了四种MOF描述符分别对TSC的影响程度;而决策树模型则被用于规划性能高效MOFs的设计路径.最后,20种性能最优MOFs从数据库中脱颖而出,它们将为净化天然气技术的发展提供坚实的理论指导. 相似文献
12.
气相色谱/质谱测定汽油中的元素硫 总被引:2,自引:0,他引:2
在气相色谱/质谱(GC/MS)联用仪上,研究了汽油中元素硫存在的结构,并采用外标法定量,开发出了汽油中元素硫测定的新方法。样品直接进样(进样量1 μL),完成一个样品分析只需16 min,最小检测量(MDQ)为9.55 pg。与现有的其他元素硫分析方法相比,该方法更简便 快速 灵敏,且无干扰。该方法选择了最佳分析条件,因而线性范围宽(0.01-100 mg/L),线性相关系数大于0.9995;方法精确度高,元素硫检测的相对标准偏差(RSD)<5%,回收率为93.01%-106.21%。该方法样品用量少 相似文献
13.
气相色谱法测定天然气中的硫化物 总被引:9,自引:0,他引:9
姚华群 《分析测试技术与仪器》2001,7(3):170-173
用气相色谱法,选择脉冲火焰光度检测器(PFPD),在甲基硅油毛细管色谱柱上分析天然气中的硫化物.该方法灵敏度高,选择性好,结果准确,相对标准偏差小于1.1%. 相似文献
14.
15.
大型湿气源排放中普遍存在的水汽是制约吸附碳捕集规模化发展的重要挑战之一。H2O的极性往往会导致吸附材料的CO2捕集率降低甚至出现失效,也会造成捕集系统产生温降、压降等寄生损失,甚至形成设备腐蚀、吸附剂中毒等不利影响,最终额外能耗和成本大幅提高。为解决上述挑战,深入理解CO2与H2O共吸附过程的作用机制,据此开发成本合理、再生能耗低且对水气不敏感的高效CO2吸附剂及吸附技术是实现湿气源下高效吸附碳捕集的重要途径。目前,由于分散在多个领域且各有侧重,关于H2O对CO2吸附影响的机制分析缺乏汇总与概括,难以形成相对统一的观点。本文针对CO2与H2O共吸附过程,从宏观与微观层面进行了详细综述。首先,基于共吸附机制的基础研究,依次介绍了竞争吸附、变湿吸附和呼吸效应领域的研究进展并进行了简要评价。其次,基于共吸附的应用研究,阐述了湿气源CO2捕集技术的吸附剂研发与工艺改进两部分的现状及进展,也对不同湿气源下CO2捕集水平进行了简要评价。最后,总结了目前研究中的不足之处并展望了未来的研究方向。本文将分散于各领域的CO2与H2O共吸附过程进行集中归纳、分析和对比,或可为湿气源碳捕集技术提供有效的指导。 相似文献
16.
利用激光光解-瞬态吸收技术探讨了水相•HS自由基的产生及其在水溶液中的化学行为. 实验中利用•OH与H2S反应以及266 nm激光直接光解HS−两种途径产生了•HS, 通过光谱解析, 得到了•HS的紫外-可见吸收光谱: 吸收范围为220~300 nm, 最大吸收在220 nm, 并且在250~270 nm有肩峰. 进一步的研究结果表明, 氧气饱和的水溶液中,•HS的化学行为非常活泼, 它首先与O2反应生成•SO2−, •SO2−继续与O2发生电子转移反应生成SO2和•O2−, 后者在酸性条件下会很快地质子化生成•HO2. 相似文献
17.
18.
《Analytical letters》2012,45(9):1603-1614
Abstract In brazil, gasoline is usually adulterated by diesel oil, ethanol (in addition to the amount legally specified), petrochemical raffinates, and kerosene. This is an illegal action performed mainly in an attempt to raise profits. Therefore, methods for reliable identification of adulterated gasoline are very attractive. The aim of this work was to propose a method to quantify kerosene in gasoline through N-way multivariate analysis and a homemade Comprehensive Two-Dimensional Gas Chromatography with Flame Ionization Detection (GC × GC-FID). Models generated by Parallel Factor Analysis (PARAFAC), PARAFAC2, and Multi-way Partial Least Squares (N-PLS) allowed the quantification of kerosene in gasoline with Root Mean Square Error of Cross-Validation (RMSECV) values of 2.98%, 2.65%, and 2.08%, respectively. 相似文献
19.
Collisions between hot H atoms and CO2 molecules were studied experimentally by time-resolved Fourier transform infrared emission spectroscopy. H atoms with three translational energies, 174.7, 241.0 and 306.2 kJ/mol respectively, were generated by UV laser photolysis to initiate a chemical reaction of H+CO2!OH+CO. Vibrationally excited CO (v≤2) was observed in the spectrum, where CO was the product of the reaction. The highly efficient T-V energy transfer from the hot H atoms to the CO2 was verified too. The highest vibrational level of v=4 in CO2 (v≤3) was found. Rate ratio of the chemical reaction to the energy transfer was estimated as 10. 相似文献
20.
In-depth understanding of the mechanisms of hydrogen sulfide (H2S) adsorption on catalysts during desulfurization from industrial waste gas streams is important for developing effective catalysts to be used in the decomposition of H2S. In this work, the dissociation behavior of H2S adsorbed on a single-atom catalyst (Ti or V-decorated Ti2CO2 surface) was investigated by performing density functional theory (DFT) calculations. The corresponding diffusion behavior revealed that Ti or V atoms could be dispersed on the Ti2CO2 monolayer, without aggregation in the form of single atoms. In addition, analyses of the partial density of states (PDOS), Hirshfeld charges, and electron density difference indicated that the decorated Ti or V atoms led to charge redistribution on the Ti2CO2 surface and significantly improved the interaction between the H2S gas molecules and Ti2CO2, thereby enhancing the catalytic activity of V/Ti2CO2. In order to gain a deeper understanding of the mechanism of H2S decomposition (H2S → HS* + H* → H2 + S*), a comparative analysis of the results for the decomposition of H2S on the Ti/Ti2CO2 and V/Ti2CO2 surfaces was carried out. The catalytic dissociation behavior of H2S is explained as follows: once H2S is adsorbed on the V/Ti2CO2 or Ti/Ti2CO2 surface, it spontaneously dissociates into HS*/H* without any energy barrier on the catalyst surface. Subsequently, the V atoms would not only promote the cleavage of the H-S bond, but also play a major role in the formation of S atoms. Moreover, the rate-limiting step for the entire process proceeded on the Ti/Ti2CO2 surface with an energy barrier of 0.86 eV, while that for V/Ti2CO2 was 0.28 eV, indicating that the H2S molecules easily dissociated into S and H2 on the V/Ti2CO2 surface at room temperature. The reaction time for H2S decomposition on the V/Ti2CO2 surface at 500 K was 65.79 ns, which was almost two orders of magnitude higher than that at room temperature. Thus, the decomposition of H2S on the V-doped Ti2CO2 surface is associated very fast kinetics. Furthermore, the S atoms can form elemental sulfur with aggregation on the V/Ti2CO2 surface to promote recycling reactions. Compared with previously reported catalytic systems, the single-atom catalyst (SAC) V/Ti2CO2 catalyst has greater application prospects in terms of sustainable economy or removal efficiency for H2S treatment. Our results suggest that V-doped Ti2CO2 is an excellent candidate for a highly effective non-noble metal catalyst applicable to H2S decomposition.
相似文献