首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dynamic multiscale simulation based on quasicontinuum method (QC) has been conducted to study the effect of tool geometry in nanometric cutting process of single crystal copper. In the simulation, the many-body EAM potential is used for the interactions between copper atoms in of the workpiece. The simulation captures the atomistic behaviors of material removal mechanisms from the free surface and the mobility of dislocations and their interactions with the computational cost of local atomistic simulation method. Simulations are performed on single crystal copper to study the atomistic details of material removal, chip formation, sub-surface deformation, and machining mechanism. The simulation results demonstrate that tool edge radius has significant effect on chip formation and subsurface deformation, because the effective rake angle varies with the tool edge radius. In addition, different effective rake angles result in different stress states and smoother surface can be obtained under bigger clearance angle. The variations of tangential force, normal force as well as the ratio of normal force to tangential force are obtained to analyze the effects of tool edge radius, rake angle and clearance angle in quantitative way.  相似文献   

2.
ABSTRACT

The ability to experimentally synthesise ceramic materials to incorporate nanotwinned microstructures can drastically affect the underlying deformation mechanisms and mechanics through the complex interaction between stress state, crystallographic orientation, and twin orientation. In this study, molecular dynamics simulations are used to examine the transition in deformation mechanisms and mechanical responses of nanotwinned zinc-blende SiC ceramics subjected to different stress states (uniaxial compressive, uniaxial tensile, and shear deformation) by employing various twin spacings and loading/crystallographic orientations in nanotwinned structures, as compared to their single crystal counterparts. The simulation results show that different combinations of stress states and crystal/twin orientation, and twin spacing trigger different deformation mechanisms: (i) shear localised deformation and shear-induced fracture, preceded by point defect formation and dislocation slip, in the vicinity of the twin lamellae, shear band formation, and dislocation (emission) avalanche; (ii) cleavage and fracture without dislocation plasticity, weakening the nanotwinned ceramics compared to their twin-free counterpart; (iii) severe localised deformation, generating a unique zigzag microstructure between twins without any structural phase transformations or amorphisation, and (iv) atomic disordering localised in the vicinity of coherent twin boundaries, triggering dislocation nucleation and low shearability compared to twin-free systems.  相似文献   

3.
Evolution of plastic deformation at the tip of a wedge-shaped crack in a crystal under planar strain (modes I and II) was calculated for different cleavage planes, easy-slip systems, angles at the wedge tip, and ratios of the external extension and shear loads. Time distributions are obtained for the plastic deformation, the effective shear stress, the stress intensity factor, and the crack growth direction under monotonic load of the crystal up to a specified limit and further relaxation to establishment of equilibrium distributions under a constant external load. Numerical calculations were performed for an α-Fe crystal.  相似文献   

4.
王静  吴希俊  王颖 《物理学报》1993,42(12):1963-1957
系统地研究了<110>取向倾侧铜-铋三晶的断裂行为,并与铜-铋双晶的结果比较,结果表明:三叉结点对不同取向的铜-铋三晶的断裂行为产生不同程度的影响,使得同一晶界在铜-铋三晶和双晶中有不同的断裂行为,三叉结附近的高内应力引起范性形变的不均匀性,使三晶中出现滑移多相性和晶粒的旋转。结合三叉结点附近应力场的计算,对此进行了讨论。 关键词:  相似文献   

5.
罗旋  钱革非  王煜明 《物理学报》1994,43(12):1957-1965
用分子动力学方法对金属界面在弯曲状态下的力学行为做了模拟计算.在自行设计的两种弯曲模型中,首先比较了Ag/Ni在不形成界面、形成界面(错配比约为15%)以及Cu/Ni形成界面(错配比约为3%)时在动态弯曲过程中的势能-应变曲线,应力-应变曲线,模量-应变曲线,通过比较得出的结论是:界面的存在影响很大,失配位错影响界面的性质,并且错配比不同界面的力学性质亦不相同.同时,对计算元胞的尺寸效应做了详细的讨论,给出了用于计算机模拟中比较适宜的计算元胞的尺寸.最后,利用圆弧弯曲模型将静态平移周期性边界条件应用于动态 关键词:  相似文献   

6.
D. Catoor 《哲学杂志》2013,93(10):1437-1460
Crack propagation on the basal planes in zinc was examined by means of in situ fracture testing of pre-cracked single crystals, with specific attention paid to the fracture mechanism. During quasistatic loading, crack propagation occurred in short bursts of dynamic crack extension followed by periods of arrests, the latter accompanied by plastic deformation and blunting of the crack-tip. In situ observations confirmed nucleation and propagation of microcracks on parallel basal planes and plastic deformation and failure of the linking ligaments. Pre-existing twins in the crack path serve as potent crack arrestors. The crystallographic orientation of the crack growth direction on the basal plane was found to influence both the fracture load as well as the deformation at the crack-tip, producing fracture surfaces of noticeably different appearances. Finite element analysis incorporating crystal plasticity was used to identify dominant slip systems and the stress distribution around the crack-tip in plane stress and plane strain. The computational results are helpful in rationalizing the experimental observations including the mechanism of crack propagation, the orientation dependence of crack-tip plasticity and the fracture surface morphology.  相似文献   

7.
Damage profiles for 250-keV self-ion irradiation of gold, determined by (1) stereo electron microscopy measurements of the depth distribution of visible clusters and (2) binary-collision simulations, are presented. Simulations for an amorphous medium, a single crystal (with the ion beam oriented in a nonchanneling direction), and a polycrystal were performed using the MARLOWE code. The calculated damage profiles for the single crystal and the polycrystal both exhibit approximately exponential tails, but have shallower modal depths than the profile for the amorphous medium. The inclusion of room-temperature thermal vibrations in the simulations is found to broaden the profile and suppress long-range channeling. Comparison between simulation and experiment suggests that a screening length somewhat smaller than the Firsov value is appropriate for Au-Au interactions.  相似文献   

8.
J.D. Clayton  J. Knap 《哲学杂志》2015,95(24):2661-2696
A phase field theory for coupled twinning and fracture in single crystal domains is developed. Distinct order parameters denote twinned and fractured domains, finite strains are addressed and elastic nonlinearity is included via a neo-Hookean strain energy potential. The governing equations and boundary conditions are derived; an incremental energy minimization approach is advocated for prediction of equilibrium microstructural morphologies under quasi-static loading protocols. Aspects of the theory are analysed in detail for a material element undergoing simple shear deformation. Exact analytical and/or one-dimensional numerical solutions are obtained in dimensionless form for stress states, stability criteria and order parameter profiles at localized fractures or twinning zones. For sufficient applied strain, the relative likelihood of localized twinning vs. localized fracture is found to depend only on the ratio of twin boundary surface energy to fracture surface energy. Predicted criteria for shear stress-driven fracture or twinning are often found to be in closer agreement with test data for several types of real crystals than those based on the concept of theoretical strength.  相似文献   

9.
王琛  宋海洋  安敏荣 《物理学报》2014,63(4):46201-046201
采用分子动力学模拟方法,研究了在拉伸载荷下晶界对双晶镁变形机制的影响,对不同旋转角度的模型以及对称与非对称结构的模型进行了研究.模拟结果表明:应变加载方向与晶向所成角度对双晶镁塑形变形阶段的流动应力能够产生明显的影响;对称结构的双晶镁模型的塑性性质明显优于非对称结构模型.研究结果还发现,由于晶界区域不同的位错成核及发射等运动,大角度双晶模型的塑性响应明显优于对应小角度模型的塑性响应.  相似文献   

10.
The structural evolution of interfacial dislocation networks in a Ni‐based single crystal superalloy under various stress states was simulated by molecular dynamics (MD). From the simulation, we found that the dislocation network exhibits different deformation and damage mechanisms under various stress states. The square dislocation network at the (100) phase interface is the easiest to damage under a [100] uniaxial load, but more difficult to damage when multi‐axial loads are applied. This suggests that the application of a [100] direction axial load is the key factor for the damage of the square dislocation network, which leads to failure of the Ni‐based single crystal superalloy under the [100] axial centrifugal load. Moreover, based on MD simulations, the effects of the stress state on γ′ rafting were explored. The results indicate that the morphology of γ′ raft depends on the damage structures of the dislocation network under various stress states.  相似文献   

11.
郭刘洋  陈铮  龙建  杨涛 《物理学报》2015,64(17):178102-178102
采用晶体相场模拟研究了单向拉伸作用下初始应力状态、晶体取向角度对单晶材料内部微裂纹尖端扩展行为的影响, 以(111)晶面上的预制中心裂纹为研究对象探讨了微裂纹尖端扩展行为的纳观机理, 结果表明: 微裂纹的扩展行为主要发生在<011>(111)滑移系上, 扩展行为与扩展方向与材料所处的初始应力状态及晶体取向紧密相关. 预拉伸应力状态将首先诱发微裂纹尖端生成滑移位错, 进而导致晶面解理而实现微裂纹尖端沿[011]晶向扩展, 扩展到一定程度后由于位错塞积, 应力集中, 使裂纹扩展方向沿另一滑移方向[101], 并形成锯齿形边缘; 预剪切应力状态下, 微裂纹尖端首先在[101]晶向解理扩展, 并诱发位错产生, 形成空洞聚集型长大的二次裂纹, 形成了明显的剪切带; 预偏变形状态下微裂纹尖端则直接以晶面解理形式[101]在上进行扩展, 直至断裂失效; 微裂纹尖端扩展行为随晶体取向不同而不同, 较小的取向角度会在裂纹尖端形成滑移位错, 诱发空位而形成二次裂纹, 而较大的取向角下的裂纹尖端则以直接解理扩展为主, 扩展方向与拉伸方向几近垂直.  相似文献   

12.
高平均功率开关晶体热力学特性有限元分析   总被引:1,自引:1,他引:0       下载免费PDF全文
 基于有限元数值方法,就不同的光强分布模型以及电光晶体固定或自由的边界条件,模拟分析了KDP,DKDP,LiNbO3,BBO开关晶体材料在高平均功率激光负载下的热力学特性。结果表明:激光作用数s后,温升分布基本与光强分布一致;晶体表面的最大轴向位移和最大拉应力随光斑填充因子增大而增大;晶体的力学边界约束对最大轴向位移及最大拉热应力的影响随着光斑填充因子的增大而增强;在相同的入射激光光源及相同的边界条件下,KDP上的温升最大,热畸变最严重,DKDP次之,而LiNbO3和BBO具有较低的温升值或较低的热形变和热应力。  相似文献   

13.
α-Fe裂纹的分子动力学研究   总被引:4,自引:0,他引:4       下载免费PDF全文
曹莉霞  王崇愚 《物理学报》2007,56(1):413-422
通过分子动力学方法,模拟了α-Fe裂纹的单轴拉伸实验中的形变过程.研究了不同晶体取向裂纹的形变特点和断裂机理,观察到各种形变现象,如位错形核和发射,位错运动,堆垛层错或孪晶的形成,纳米空洞的形成与连接等.计算结果表明,裂纹扩展是塑性过程和弹性过程相结合的过程,其中塑性过程表现为由裂尖发射的位错导致的原子切变行为,而弹性过程的发生则是由无位错区中的原子断键所导致.同时还研究了α-Fe裂纹的形变特点和断裂机理与温度场和应力场的依赖关系.  相似文献   

14.
Jiayun Yu  Fuxing Yin  Tao Yu 《哲学杂志》2013,93(20):2517-2530
ABSTRACT

Molecular dynamics simulation was used to stretch Cu nanoplates along its [100] direction at various strain rates and temperatures. Under high strain rate and beyond the elastic limit, the Cu nanoplates underwent an unusual deformation mechanism with expansion along free surface lateral direction and contraction along the other lateral direction, which leaded to the face-centred-cubic phase transforming into unstressed body-centred-cubic phase. Under low strain rate, the deformation of the nanoplate went back to well-known dislocation mechanism. The face-centred-cubic to body-centred-cubic phase transformation mechanism was further discussed in terms of elastic stability theory and free surface stress effect.  相似文献   

15.

Shape recovery through L1 0 -fcc order-disorder transformation of FePd is examined. Under a uniaxial compressive stress, a reversible shape change associated with the order-disorder transformation is observed. Shape memory characteristics (transformation strain, time required for the transformation and temperature hysteresis) for single-crystal and polycrystal specimens are determined by a compression test under a constant stress. The transformation strain (4% for a single crystal) and time required for disordering (about 10 s for a single crystal) are comparable with those of conventional martensitic shape memory alloys. The alloys can be used as shape memory materials with relatively high transformation temperature.  相似文献   

16.
We present a numerical study of finite strain stress fields near the tip of an interface crack between a rigid substrate and an incompressible hyperelastic solid using the finite element method (FEM). The finite element (FE) simulations make use of a remeshing scheme to overcome mesh distortion. Analyses are carried out by assuming that the crack tip is either pinned, i.e., the elastic material is perfectly bonded (no slip) to the rigid substrate, or the crack lies on a frictionless interface. We focus on a material which hardens exponentially. To explore the effect of geometric constraint on the near tip stress fields, simulations are carried out under plane stress and plane strain conditions. For both the frictionless interface and the pinned crack under plane stress deformation, we found that the true stress field directly ahead of the crack tip is dominated by the normal opening stress and the crack face opens up smoothly. This is also true for an interface crack along a frictionless boundary in plane strain deformation. However, for a pinned interface crack under plane strain deformation, the true opening normal stress is found to be lower than the shear stress and the transverse normal stress. Also, the crack opening profile for a pinned crack under plane strain deformation is completely different from those seen in plane stress and in plane strain (frictionless interface). The crack face flips over and the tip angle is almost tangential to the interface. Our results suggest that interface friction can play a very important role in interfacial fracture of soft materials on hard substrates.  相似文献   

17.
D. Catoor 《哲学杂志》2013,93(16):2154-2185
In polycrystalline materials that fail by transgranular cleavage, it is known that crystallographic misorientation of preferred fracture planes across grain boundaries can provide crack growth resistance; despite this, the micromechanisms associated with crack transmission across grain boundaries and their role in determining the overall fracture resistance are not well understood. Recent studies on diverse structural materials such as steels, aluminum alloys and intermetallics have shown a correlation between fracture resistance and the twist component of grain misorientation. However, the lack of control over the degree and type of misorientation in experimental studies, combined with a dearth of analytical and computational investigations that fully account for the three-dimensional nature of the problem, have precluded a systematic analysis of this phenomenon. In this study, this phenomenon was investigated through in situ crack propagation experiments across grain boundaries of controlled twist misorientation in zinc bicrystals. Extrinsic toughening mechanisms that activate upon crack stagnation at the grain boundary deter further crack propagation. The mechanical response and crack growth behavior were observed to be dependent on the twist angle, and several accommodation mechanisms such as twinning, strain localization and slip band blocking contribute to fracture resistance by competing with crack propagation. Three-dimensional finite element analyses incorporating crystal plasticity were performed on a stagnant crack at the grain boundary that provide insight into crack-tip stress and strain fields in the second grain. These analyses qualitatively capture the overall trends in mechanical response as well as strain localization around stagnant crack-tips.  相似文献   

18.
The temperature-rate dependences of strain resistance and the mechanisms of grain boundary sliding in Pb polycrystals and Pb-based alloys under active tension were investigated. The activation energy of plastic deformation and grain boundary sliding was determined. The structural mechanisms of grain boundary sliding were studied in a wide temperature range. The conclusion was made that self-consistency of grain boundary sliding and intragranular plastic flow has its origin in rotational deformation modes, with the grain boundary sliding being a primary process. Theoretical analysis of rotational deformation modes involved in grain boundary sliding was performed. It is shown that the dependence of deforming stress on the polycrystal grain size is impossible to describe by one universal Hall-Petch equation.  相似文献   

19.
A model of plasticity limit has been derived in the condition of hot plastic deformation, where dynamic recrystallization takes place, through the ratio between the rate of grain boundary sliding and the overall deformation rate. If fracture occurs preferentially at the grain boundaries we can replace the grain boundary deformation through the energy needed to cause fracture and express the temperature influence on the deformation stress. The plasticity limit is then the function of Zener-Hollomon parameter and deformation stress, where the exponent of deformation stress has a value of –4·3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号