首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Lagrangian dynamic formulation of the mixed similarity subgrid (SGS) model for large-eddy simulation (LES) of turbulence is proposed. In this model, averaging is performed over fluid trajectories, which makes the model applicable to complex flows without directions of statistical homogeneity. An alternative version based on a Taylor series expansion (nonlinear mixed model) is also examined. The Lagrangian models are implemented in a finite difference code and tested in forced and decaying isotropic turbulence. As comparison, the dynamic Smagorinsky model and volume-averaged formulations of the mixed models are also tested. Good results are obtained, except in the case of low-resolution LES (323) of decaying turbulence, where the similarity coefficient becomes negative due to the fact that the test-filter scale exceeds the integral scale of turbulence. At a higher resolution (643), the dynamic similarity coefficient is positive and good agreement is found between predicted and measured kinetic energy evolution. Compared to the eddy viscosity term, the similarity or the nonlinear terms contribute significantly to both SGS dissipation of kinetic energy and SGS force. In order to dynamically test the accuracy of the modeling, the error incurred in satisfying the Germano identity is evaluated. It is found that the dynamic Smagorinksy model generates a very large error, only 3% lower than the worst-case scenario without model. Addition of the similarity or nonlinear term decreases the error by up to about 50%, confirming that it represents a more realistic parameterization than the Smagorinsky model alone.  相似文献   

2.
《力学快报》2022,12(6):100389
Fourier neural operator (FNO) model is developed for large eddy simulation (LES) of three-dimensional (3D) turbulence. Velocity fields of isotropic turbulence generated by direct numerical simulation (DNS) are used for training the FNO model to predict the filtered velocity field at a given time. The input of the FNO model is the filtered velocity fields at the previous several time-nodes with large time lag. In the a posteriori study of LES, the FNO model performs better than the dynamic Smagorinsky model (DSM) and the dynamic mixed model (DMM) in the prediction of the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and the instantaneous flow structures. Moreover, the proposed model can significantly reduce the computational cost, and can be well generalized to LES of turbulence at higher Taylor-Reynolds numbers.  相似文献   

3.
The influence of mesh motion on the quality of large eddy simulation (LES) was studied in the present article. A three‐dimensional, turbulent pipe flow (Reτ=360) was considered as a test case. Simulations with both stretching and static meshes were carried out in order to understand how mesh motion affects the turbulence statistics. The spatial filtering of static and moving mesh direct numerical simulation (DNS) data showed how an ideal LES would perform, while the comparison of DNS cases with static and moving meshes revealed that no significant numerical errors arise from the mesh motion when the simulation is fully resolved. The comparison of the filtered fields of the DNS with a moving mesh with the corresponding LES fields revealed different responses to mesh motion from different numerical approaches. A straightforward test was applied in order to verify that the moving mesh works consistently in LES: when the mesh is stretched in the streamwise direction, the moving mesh results should be in between the two extremal resolutions between which the mesh is stretched. Numerical investigations using four different LES approaches were carried out. In addition to the Smagorinsky model, three implicit LES approaches were used: linear interpolation (non‐dissipative), the Gamma limiter (dissipative), and the scale‐selective discretisation (slightly dissipative). The results indicate that while the Smagorinsky and the scale‐selective discretisation approaches produce results consistent with the resolution of the non‐static mesh, the implicit LES with linear interpolation or the Gamma scheme do not. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
This paper summarizes several results relative to discrete filters for subgrid‐scale (SGS) models based on a multi‐level filtering procedure. First, a theoretical study of discrete filters in physical space is performed. The analysis is done in the uniform one‐dimensional case, and is then extended to the general multi‐dimensional case for arbitrary structured and unstructured meshes. Some equivalence classes for the discrete filters are defined, based either on a differential approximation or the associated transfer function. Methods for the definition of discrete filters are proposed in the general case, including the approximation of continuous convolution filters. Second, the sensitivity of several SGS models with respect to the test filter is investigated. The selected models are: the dynamic Smagorinsky model, the mixed scale model (MSM), the selective MSM and the Liu–Meneveau–Katz (LMK) similarity model. Improved versions, which explicitly account for the spectral width of the test filter of the MSM and the LMK similarity model are proposed. The analysis, which reveals a significant influence of the test filter, is done through a priori testing on a 1283 field issued from the large eddy simulation (LES) of freely decaying homogeneous isotropic turbulence. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
The explicit dependence of LES fields on the turbulence resolution scale Δ implies that LES statistics usually vary with Δ and exhibit different convergence behaviors for different types of statistics, flow variables and subgrid LES models. The present work compares the performance of two popular subgrid models—the dynamic Smagorinsky model and the Vreman model—based on the convergence of their LES statistics with respect to Δ for a piloted methane-air (Sandia D) flame. The Δ-dependence of the LES statistics is studied based on five grids with progressively increased resolution ranging from 3 × 105 to about 10.4 × 106 cells. The simulation results show that the resolved velocity statistics converge for the finest grids with some weak Δ-dependence observed in the variance fields. The mixture fraction statistics are found to be more sensitive to the turbulence resolution scale upstream in the flame signifying the importance of the estimation of the Δ-invariant LES statistics at the DNS limit. For the considered flame the Vreman subgrid model exhibits good performance with the statistics being very close to those given by the dynamic Smagorinsky model, and being rather insensitive to a choice of the model constant.  相似文献   

6.
This paper presents results of a large eddy simulation (LES) combined with Lagrangian particle tracking and a point-force approximation for the feedback effect of particles on the downward turbulent gaseous flow in a vertical channel. The LES predictions are compared with the results obtained by direct numerical simulation (DNS) of a finer computational mesh. A parametric study is conducted for particles with two response times in simulations with and without streamwise gravitational settling and elastic, binary interparticle collisions. It is shown that the classical and the dynamic Smagorinsky turbulence models adequately predict the particle-induced changes in the mean streamwise velocity and the Reynolds stresses of the carrier phase for the range of parameters studied. However, the largest discrepancies between the LES and DNS results are found in the cases of particle-laden flows. Conditional sampling of the instantaneous resolved flow fields indicates that the mechanisms by which particles directly oppose the production of momentum and vorticity of the organized fluid motions are also observed in the LES results. However, the geometric features of the near-wall quasistreamwise vortices are overestimated by the use of both turbulence models compared to the DNS predictions.  相似文献   

7.
Static model coefficients for an algebraic subgrid stress (SGS) model are determined using a dynamic approach, based on results from simulations of isotropic decaying turbulence. The study was motivated by the discrepancies in energy transfer predictions using the previously documented coefficients (Bhushan and Warsi, Int. J. Numer. Meth. Fluids 2005; 49 : 489–519). The discrepancies are identified to be due to inconsistent filter functions used in the analytic estimates and the simulations. The study emphasizes that SGS model development should use filter functions compatible with those inherent in CFD application solvers. The dynamic approach predicts consistent model and transfer coefficients for different grid resolutions and is judged to be a reliable basis for model coefficient adjustments. The predicted Leonard's stress coefficient and associated energy transfer coefficients agree very well with the analytic estimates using a Gaussian/cutoff combination filter. This suggests that the modeling of Leonard's stress term using a truncated Taylor series expansion is robust and may not benefit significantly from dynamic modeling. Validation simulations were performed for turbulent channel flow at Reτ = 180 and 590. The dynamic approach was found to be reliable only for the lower log‐layer of the Reτ = 590 case, where the scale invariance condition was satisfied. Nonetheless, in this narrow range, the model and transfer coefficients compare well with the isotropic case. The static coefficient algebraic model with new adjusted coefficients shows improved predictions compared with the previous coefficients, for both isotropic decaying turbulence and channel flow cases. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This article employs LES to simulate temporal mixing layers with Mach numbers ranging from M c  = 0.3 to M c  = 1.2. A form of approximate deconvolution together with a dynamic Smagorinsky subgrid model are employed as subgrid models. A large computational domain is used along with relatively good resolution. The LES results regarding growth rate, turbulence levels, turbulence anisotropy, and pressure–strain correlation show excellent agreement with those available from previous experimental and DNS results of the same flow configuration, underlining the effectiveness and accuracy of properly conducted LES. Coherent structures during the transitional stage change from spanwise aligned rollers to streamwise-aligned thinner vortices at high Mach number. In the quasi-self-similar turbulent stage, the resolved-scale vorticity is more isotropic at higher M c , and its vertical correlation length scale is smaller. The ratio of the vertical integral length scale of streamwise velocity fluctuation to a characteristic isotropic estimate is found to decrease with increasing M c . Thus, compressibility leads to increased spatial decorrelation of turbulence which is one reason for the reduction in pressure–strain correlation with increasing M c . The balance of the resolved-scale fluctuating vorticity is examined, and it is observed that the linear production by mean shear becomes less important compared to nonlinear vortex stretching at high M c . A spectral decomposition of the pressure fluctuations into low- and intermediate-to-high-wave numbers is performed. The low-wave number part of the pressure field is found not to correlate with the strain field, although it does have a significant contribution to the r.m.s of the fluctuating pressure. As a consequence, the pressure–strain correlation can be analyzed using a simplified Green’s function for the Poisson equation as is demonstrated here using the LES data.  相似文献   

9.
Assessment of three regularization-based and two eddy-viscosity-based subgrid-scale (SGS) turbulence models for large eddy simulations (LES) are carried out in the context of magnetohydrodynamic (MHD) decaying homogeneous turbulence (DHT) with a Taylor scale Reynolds number (Reλ) of 120 and a MHD transition-to-turbulence Taylor-Green vortex (TGV) problems with a Reynolds number of 3000, through direct comparisons to direct numerical simulations (DNS). Simulations are conducted using the low-magnetic Reynolds number approximation (Rem<<1). LES predictions using the regularization-based Leray- α,LANS- α, and Clark- α SGS models, along with the eddy viscosity-based non-dynamic Smagorinsky and the dynamic Smagorinsky models are compared to in-house DNS for DHT and previous results for TGV. With regard to the regularization models, this work represents their first application to MHD turbulence. Analyses of turbulent kinetic energy decay rates, energy spectra, and vorticity fields made between the varying magnetic field cases demonstrated that the regularization models performed poorly compared to the eddy-viscosity models for all MHD cases, but the comparisons improved with increase in magnitude of magnetic field, due to a decrease in the population of SGS eddies within the flow field.  相似文献   

10.
A new large eddy simulation (LES) approach for particle-laden turbulent flows in the framework of the Eulerian formalism for inertial particle statistical modelling is developed. Local instantaneous Eulerian equations for the particle cloud are first written using the mesoscopic Eulerian formalism (MEF) proposed by Février et al. (J Fluid Mech 533:1–46, 2005), which accounts for the contribution of an uncorrelated velocity component for inertial particles with relaxation time larger than the Kolmogorov time scale. Second, particle LES equations are obtained by volume filtering the mesoscopic Eulerian ones. In such an approach, the particulate flow at larger scales than the filter width is recovered while sub-grid effects need to be modelled. Particle eddy-viscosity, scale similarity and mixed sub-grid stress (SGS) models derived from fluid compressible turbulence SGS models are presented. Evaluation of such models is performed using three sets of particle Lagrangian results computed from discrete particle simulation (DPS) coupled with fluid direct numerical simulation (DNS) of homogeneous isotropic decaying turbulence. The two phase flow regime corresponds to the dilute one where two-way coupling and inter-particle collisions are not considered. The different particle Stokes number (based on Kolmogorov time scale) are initially equal to 1, 2.2 and 5.1. The mesoscopic field properties are analysed in detail by considering the particle velocity probability function (PDF), correlated velocity power spectra and random uncorrelated velocity moments. The mesoscopic fields measured from DPS+DNS are then filtered to obtain large scale fields. A priori evaluation of particle sub-grid stress models gives comparable agreement than for fluid compressible turbulence models. It has been found that the standard Smagorinsky eddy-viscosity model exhibits the smaller correlation coefficients, the scale similarity model shows very good correlation coefficient but strongly underestimates the sub-grid dissipation and the mixed model is on the whole superior to pure eddy-viscosity model.  相似文献   

11.
In this paper, a general optimal formulation for the dynamic Smagorinsky subgrid‐scale (SGS) stress model is reported. The Smagorinsky constitutive relation has been revisited from the perspective of functional variation and optimization. The local error density of the dynamic Smagorinsky SGS model has been minimized directly to determine the model coefficient CS. A sufficient and necessary condition for optimizing the SGS model is obtained and an orthogonal condition (OC), which governs the instantaneous spatial distribution of the optimal dynamic model coefficient, is formulated. The OC is a useful general optimization condition, which unifies several classical dynamic SGS modelling formulations reported in the literature. In addition, the OC also results in a new dynamic model in the form of a Picard's integral equation. The approximation tensorial space for the projected Leonard stress is identified and the physical meaning for several basic grid and test‐grid level tensors is systematically discussed. Numerical simulations of turbulent Couette flow are used to validate the new model formulation as represented by the Picard's integral equation for Reynolds numbers ranging from 1500 to 7050 (based on one half of the velocity difference of the two plates and the channel height). The relative magnitudes of the Smagorinsky constitutive parameters have been investigated, including the model coefficient, SGS viscosity and filtered strain rate tensor. In general, this paper focuses on investigation of fundamental mathematical and physical properties of the popular Smagorinsky constitutive relation and its related dynamic modelling optimization procedure. Copyright © 2005 John Wiley & Sons Ltd.  相似文献   

12.
A novel dynamic mixing length (DML) subgrid‐scale model for large eddy simulations is proposed in this work to improve the cutoff length of the Smagorinsky model. The characteristic mixing length (or the characteristic wave number) is dynamically estimated for the subgrid‐scale fluctuation of turbulence by the cutoff wave‐number, kc, and the dissipation wave‐number, kd. The dissipation wave number is derived from the kinetic energy spectrum equation and the dissipation spectrum equation. To prove the promise of the DML model, this model is used to simulate the lid‐driven cubical cavity with max‐velocity‐based Reynolds numbers 8850 and 12,000, the channel flows with friction‐velocity‐based Reynolds numbers 180, 395, 590, and 950, and the turbulent flow past a square cylinder at the higher Reynolds number 21,400, respectively, compared with the Smagorinsky model and Germano et al.'s dynamic Smagorinsky model. Different numerical experiments with different Reynolds numbers show that the DML model can be used in simulations of flows with a wide range of Reynolds numbers without the occurrence of singular values. The DML model can alleviate the dissipation of the Smagorinsky model without the loss of its robustness. The DML model shows some advantages over Germano et al.'s dynamic Smagorinsky model in its high stability and simplicity of calculation because the coefficient of the DML model always stays positive. The characteristic mixing length in the DML model reflects the subgrid‐scale fluctuation of turbulence in nature and thus the characteristic mixing length has a spatial and temporal distribution in turbulent flow. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Le Fang 《力学快报》2011,1(3):032002
The most common method to determine the coefficient of Smagorinsky model now is to employ the Germano identity, however it is too complex and expensive in numerical calculation. In this letter we propose a new dynamic formula for determining the coefficient, which is based on the Kolmogorov equation of filtered velocity in physical space. The simplified formula is quite easy to implement in calculation. It is then verified in both homogeneous isotropic turbulence and wall-bounded turbulence by A Priori and A Posteriori tests.  相似文献   

14.
This paper presents the second validation step of a compressible discontinuous Galerkin solver with symmetric interior penalty (DGM/SIP) for the direct numerical simulation (DNS) and the large eddy simulation (LES) of complex flows. The method has already been successfully validated for DNS of an academic flow and has been applied to flows around complex geometries (e.g. airfoils and turbomachinery blades). During these studies, the advantages of the dissipation properties of the method have been highlighted, showing a natural tendency to dissipate only the under‐resolved scales (i.e the smallest scales present on the mesh), leaving the larger scales unaffected. This phenomenon is further enhanced as the polynomial order is increased. Indeed, the order increases the dissipation at the largest wave numbers, while its range of impact is reduced. These properties are spectrally compatible with a subgrid‐scale model, and hence DGM may be well suited to be used for an implicit LES (ILES) approach. A validation of this DGM/ILES approach is here investigated on canonical flows, allowing to study the impact of the discretisation on the turbulence for under‐resolved computations. The first test case is the LES of decaying homogeneous isotropic turbulence (HIT) at very high Reynolds number. This benchmark allows to assess the spectral behaviour of the method for implicit LES. The results are in agreement with theory and are even slightly more accurate than other numerical results from literature, obtained using a pseudo‐spectral (PS) method with a state‐of‐the‐art subgrid‐scale model. The second benchmark is the LES of the channel flow. Three Reynolds numbers are considered: Reτ=395, 590 and 950. The results are compared with DNS of Moser et al. and Hoyas et al., also using PS methods. Both averaged velocity and fluctuations are globally in good agreement with the reference, showing the ability of the method to predict equilibrium wall‐bounded flow turbulence. To show that the method is able to perform accurate DNS, a DNS of HIT at Reλ=64 and a DNS of the channel flow at Reτ=180 are also performed. The effects of the grid refinement are investigated on the channel flow at Reτ=395, highlighting the improvement of the results when refining the mesh in the spanwise direction. Finally, the modification of the ILES parameters, that is the Riemann solver and of the SIP coefficient, is studied on both cases, showing a significant influence on the choice of the Riemann solver. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
ABSTRACT

In this work, we present a localised form of the dynamic eddy viscosity model for computationally efficient and accurate simulation of the turbulent flows governed by Euler equations. In our framework, we determine the dynamic model coefficient locally using the information from neighbouring grid points through a test filtering process. We then develop an optimised Gaussian filtering kernel, using a consistent definition with respect to the test filtering ratio, which gives full attenuation at the grid cut-off wave number. A systematic a-posteriori analysis of our model is performed by solving two 3D test problems: (i) incompressible Taylor–Green vortex flow and (ii) compressible shear layer turbulence induced by Kelvin–Helmholtz instability to show the wide range of applicability of the proposed localised dynamic model. We demonstrate that the proposed dynamic model is robust and provides a better estimation of the inertial range turbulence dynamics than other numerical models tested in this study.  相似文献   

16.
Large eddy simulation (LES) is carried out to investigate the turbulent boundary-layer flows over a hill-shaped model with a steep or relatively moderate slope at moderately high Reynolds numbers (Re = O(103)) defined by the hill height and the velocity at the hill height. The study focuses on the effects of surface roughness and curvature. For Sub-grid Scale (SGS) modeling of LES, both the dynamic Smagorinsky model (DSM) and the dynamic mixed model (DMM) are applied. The behavior of the separated shear layer and the vortex motion are affected by the oncoming turbulence, such that the shear layer comes close to the ground surface, or the size of a separation region becomes small because of the earlier instability of the separated shear layer. Appropriate measures are required to generate the inflow turbulence. The methods of Lund et al. (J. Comput. Phys., 140:233–258, 1998) and Nozawa and Tamura (J. Wind Eng. Ind. Aerodyn., 90:1151–1162, 2002; The 4th European and African Conference on Wind Engineering, 1–6, 2005) are employed to simulate the smooth- and rough-wall turbulent boundary layers in order to generate time-sequential data of inflow turbulence. This paper discusses the unsteady phenomena of the wake flows over the smooth and rough 2D hill-shaped obstacles and aims to clarify the roughness effects on the flow patterns and the turbulence statistics distorted by the hill. Numerical validation is conducted by comparing the simulation results with wind tunnel experiment data for the same hill shape at almost the same Re. The applicability of DSM and DMM are discussed, focusing on the recirculation region behind a steep hill.  相似文献   

17.
Large Eddy Simulation (LES) of the decay of isotropic turbulence and of channel flow has been performed using an explicit second-order unstructured grid algorithm for tetrahedral cells. The algorithm solves for cell-averaged values using the finite volume form of the unsteady compressible Jittered Navier-Stokes equations. The inviscid fluxes are obtained from Godunov's exact Riemann solver. Reconstruction of the flow variables to the left and right sides of each face is performed using least squares or Frink's method. The viscous fluxes and heat transfer are obtained by application of Gauss' theorem. LES of the decay of nearly incompressible isotropic turbulence has been performed using two models for the SGS stresses: the Monotone Integrated Large Eddy Simulation (MILES) approach, wherein the inherent numerical dissipation models the sub-grid scale (SGS) dissipation, and the Smagorinsky SGS model. The results using the MILES approach with least squares reconstruction show good agreement with incompressible experimental data. The contribution of the Smagorinsky SGS model is negligible. LES of turbulent channel flow was performed at a Reynolds number (based on channel height and bulk velocity) of 5600 and Mach number of 0.5 (at which compressibility effects are minimal) using Smagorinsky's SGS model with van Driest damping. The results show good agreement with experimental data and direct numerical simulations for incompressible channel flow. The SGS eddy viscosity is less than 10% of the molecular viscosity, and therefore the LES is effectively MILES with molecular viscosity.  相似文献   

18.
Rising buoyant plumes from a point heat source in a naturally ventilated enclosure have been investigated using large-eddy simulation (LES). The aim of the work is to assess the performance and the accuracy of LES for modelling buoyancy-driven displacement ventilation of an enclosure and to shed more light on the transitional behaviour of the plume and the coherent structures involved. The Smagorinsky sub-grid scale model is used for the unresolved small-scale turbulence. The Rayleigh number, Ra is chosen to be in the range where spatial transition from laminar to turbulent flow takes place (Ra = 1.5 × 109). The plume properties (source strength and rate of spread) as well as the ventilation properties (stratification height and temperature of stratified layer) estimated using the theory of Linden et al. are found to agree reasonably well with the LES results. The variation of the plume width with height indicates a linear variation of the entrainment coefficient rather than a constant value used by Linden et al. for a fully turbulent thermal plume. Flow visualisation revealed the nature of the large-scale coherent structures involved in the transition to turbulence in the plume. The most excited modes observed in the velocity, pressure and temperature fields spectra correspond to Strouhal number in the range 0.3 ≤ St ≤ 0.55 which is in agreement with those observed by Zhou et al. for a turbulent forced plume. Excited modes less than thisvalue (St = 0.2) were observed and may be due to low-frequency motions felt throughout the flow.  相似文献   

19.
A new subgrid-scale (SGS) model for the thermal field is proposed. The model is an extended version of the mixed-timescale (MTS) SGS model for velocity field by Inagaki et al. (2005), which has been confirmed to be a refined SGS model for velocity field suited to engineering-relevant practical large eddy simulation (LES). In the proposed model for the thermal field, a hybrid timescale between the timescales of the velocity and thermal fields is introduced in a manner similar to velocity-field modeling. Thus, the present model dispenses with an ambiguous SGS turbulent Prandtl number, like the dynamic SGS model. In addition, the wall-limiting behavior of turbulence is satisfied, which is not in the original MTS model, by incorporating the wall-damping function for LES based on the Kolmogorov velocity scale proposed by Inagaki et al. (2010). The model performance is tested in plane channel flows at various Prandtl numbers, and the results show that this model gives the ratio of the timescales between the velocity and thermal fields similar to that obtained using the dynamic Smagorinsky model with locally calculated model parameters. It is also shown that the proposed model predicts better mean and fluctuating temperature profiles in cooperation with the revised MTS model for the velocity field, than the Smagorinsky model and the dynamic Smagorinsky model. The present model is constructed with fixed model parameters, so that it does not suffer from computational instability with the dynamic model. Thus, it is expected to be a refined and versatile SGS model suited for practical LES of the thermal field.  相似文献   

20.
The subgrid-scale (SGS) model in a large-eddy simulation (LES) operates on a range of scales which is marginally resolved by discretization schemes. Accordingly, the discretization scheme and the subgrid-scale model are linked. One can exploit this link by developing discretization methods from subgrid-scale models, or the converse. Approaches where SGS models and numerical discretizations are fully merged are called implicit LES (ILES). Recently, we have proposed a systematic framework for the design, analysis, and optimization of nonlinear discretization schemes for implicit LES. In this framework parameters inherent to the discretization scheme are determined in such a way that the numerical truncation error acts as a physically motivated SGS model. The resulting so-called adaptive local deconvolution method (ALDM) for implicit LES allows for reliable predictions of isotropic forced and decaying turbulence and of unbounded transitional flows for a wide range of Reynolds numbers. In the present paper, ALDM is evaluated for the separated flow through a channel with streamwise-periodic constrictions at two Reynolds numbers Re = 2,808 and Re = 10,595. We demonstrate that, although model parameters of ALDM have been determined for isotropic turbulence at infinite Reynolds number, it successfully predicts mean flow and turbulence statistics in the considered physically complex, anisotropic, and inhomogeneous flow regime. It is shown that the implicit model performs at least as well as an established explicit model.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号