首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A transported probability density function (PDF) approach closed at the joint scalar level was used to model a bluff body stabilised turbulent diffusion flame (HM2) investigated experimentally by Masri and co-workers. The current effort extends a previous study of HM1 (Re?=?15,800) to a flame with a higher degree of local extinction (Re?=?23,900). The impact of an algebraic model that accounts for local Damköhler number effects on the time-scale ratio of scalar to mechanical turbulence is also evaluated along with the impact of improved thermochemistry. The computations have been performed using a hybrid Monte Carlo/finite volume algorithm and a systematically reduced H/C/N/O mechanism featuring 300 reactions, 20 solved and 28 steady-state species. The joint scalar PDF equations were solved using moving particles in a Lagrangian framework and the velocity field was closed at the second moment level. The redistribution terms were modelled using the Generalized Langevin model of Haworth and Pope. Results show that scalar fields are reproduced with encouraging accuracy and that the revised time scale model improves agreement with experimental data. A high sensitivity to the NO chemistry was observed and encouraging agreement was obtained for the first two moments following adoption of updated reaction rates proposed in an earlier study.  相似文献   

2.
A new imaging technique was developed that provides two-dimensional images of the mixture fraction (ξ), scalar dissipation rate (χ), temperature (T), and fuel consumption rate in a turbulent non-premixed jet flame. The new method is based on “seeding” nitric oxide (NO) into a particular carbon monoxide–air flame in which it remains passive. It is first demonstrated that the mass fraction of NO is a conserved scalar in the present carbon monoxide–air flame configuration, using both laminar flame calibration experiments and computations with full chemistry. Simultaneous planar laser-induced fluorescence (PLIF) and planar Rayleigh scattering temperature imaging allow a quantitative determination of the local NO mass fraction and hence mixture fraction in the turbulent jet flame. The instantaneous mixture fraction fields in conjunction with the local temperature fields are then used to determine quantitative scalar dissipation rate fields. Advantages of the present technique include an improved signal-to-noise ratio over previous Raman scattering techniques, improved accuracy near the stoichiometric contour because simplifying chemistry assumptions are not required, and the ability to measure ξ and χ in flames experiencing localized extinction. However, the method of measuring ξ based on the passive NO is restricted to dry carbon monoxide–air flames due to the well-controlled flame chemistry. Sample imaging results for ξ, χ, T, and are presented that show high levels of signal-to-noise while resolving the smallest mixing scales of the turbulent flowfield. The application, accuracy, and limitations of the present technique are discussed.  相似文献   

3.
Finite Rate Chemistry Effects in Highly Sheared Turbulent Premixed Flames   总被引:1,自引:0,他引:1  
Detailed scalar structure measurements of highly sheared turbulent premixed flames stabilized on the piloted premixed jet burner (PPJB) are reported together with corresponding numerical calculations using a particle based probability density function (PDF) method. The PPJB is capable of stabilizing highly turbulent premixed jet flames through the use of a small stoichiometric pilot that ensures initial ignition of the jet and a large shielding coflow of hot combustion products. Four lean premixed methane-air flames with a constant jet equivalence ratio are studied over a wide range of jet velocities. The scalar structure of the flames are examined through high resolution imaging of temperature and OH mole fraction, whilst the reaction rate structure is examined using simultaneous imaging of temperature and mole fractions of OH and CH2O. Measurements of temperature and mole fractions of CO and OH using the Raman–Rayleigh–LIF-crossed plane OH technique are used to examine the flame thickening and flame reaction rates. It is found that as the shear rates increase, finite-rate chemistry effects manifest through a gradual decrease in reactedness, rather than the abrupt localized extinction observed in non-premixed flames when approaching blow-off. This gradual decrease in reactedness is accompanied by a broadening in the reaction zone which is consistent with the view that turbulence structures become embedded within the instantaneous flame front. Numerical predictions using a particle-based PDF model are shown to be able to predict the measured flames with significant finite-rate chemistry effects, albeit with the use of a modified mixing frequency.  相似文献   

4.
The influences of differential diffusion rates of heat and mass on the transport of the variances of Favre fluctuations of reaction progress variable and non-dimensional temperature have been studied using three-dimensional simplified chemistry based Direct Numerical Simulation (DNS) data of statistically planar turbulent premixed flames with global Lewis number ranging from Le?= 0.34 to 1.2. The Lewis number effects on the statistical behaviours of the various terms of the transport equations of variances of Favre fluctuations of reaction progress variable and non-dimensional temperature have been analysed in the context of Reynolds Averaged Navier Stokes (RANS) simulations. It has been found that the turbulent fluxes of the progress variable and temperature variances exhibit counter-gradient transport for the flames with Lewis number significantly smaller than unity whereas the extent of this counter-gradient transport is found to decrease with increasing Lewis number. The Lewis number is also shown to have significant influences on the magnitudes of the chemical reaction and scalar dissipation rate contributions to the scalar variance transport. The modelling of the unclosed terms in the scalar variance equations for the non-unity Lewis number flames have been discussed in detail. The performances of the existing models for the unclosed terms are assessed based on a-priori analysis of DNS data. Based on the present analysis, new models for the unclosed terms of the active scalar variance transport equations are proposed, whenever necessary, which are shown to satisfactorily capture the behaviours of unclosed terms for all the flames considered in this study.  相似文献   

5.
This paper describes the use of digitally-compensated thermocouples to characterise the time-resolved behaviour of the temperature field in turbulent non-premixed jet flames for Re?2×104, including the transport of heat and the related temperature dissipation. The experimental procedures used are analysed, including the thermocouple time constant determination and the numerical derivative compensation method, and assessments of accuracy are provided for the cross-correlation techniques used in order to estimate high-order temperature statistics in the flames studied. The results quantify the influence of the spatial resolution of the measuring systems on the accuracy of correlation values, regarding the characteristics scales of the flames studied, and demonstrate the applicability of fine-wire thermocouples to characterise the turbulent transport and the dissipation of temperature in non-premixed jet flames.  相似文献   

6.
A comparative study of the length scales and morphology of dissipation fields in turbulent jet flames and non-reacting jets provides a quantitative analysis of the effects of heat release on the fine-scale structure of turbulent mixing. Planar laser Rayleigh scattering is used for highly resolved measurements of the thermal and scalar dissipation in the near fields of CH4/H2/N2 jet flames (Re d  = 15,200 and 22,800) and non-reacting propane jets (Re d  = 7,200–21,700), respectively. Heat release increases the dissipation cutoff length scales in the reaction zone of the flames such that they are significantly larger than the cutoff scales of non-reacting jets with comparable jet exit Reynolds numbers. Fine-scale anisotropy is enhanced in the reaction zone. At x/d = 10, the peaks of the dissipation angle PDFs in the Re d  = 15,200 and 22,800 jet flames exceed those of non-reacting jets with corresponding jet exit Reynolds numbers by factors of 2.3 and 1.8, respectively. Heat release significantly reduces the dissipation layer curvature in the reaction zone and in the low-temperature periphery of the jet flames. These results suggest that the reaction zone shields the outer regions of the jet flame from the highly turbulent flow closer to the jet axis.  相似文献   

7.
Simulations of turbulent CH4-air counterflow flames are presented, obtained in terms of zero and two-dimensional first-order Conditional Moment Closure (CMC) to study the flame structure and extinction limits. The CMC equation with detailed chemistry is solved without the need for operator splitting, while the accompanying flow field is determined using a commercial CFD software employing a Reynolds stress turbulence model and additional transport equations for the turbulent scalar flux and for the mean scalar dissipation rate. Two detailed chemical mechanisms and different conditional scalar dissipation rate models have been examined and small differences were found.The first-order CMC captures the overall structure of the counterflow flame accurately for the unconditional averages. The calculated conditional averages behave as if the scalar dissipation rate were under-predicted, although a comparison with measurement of the conditional scalar dissipation rate is reasonable. The calculated extinction velocity is found to be much higher than the experimental value, but the trend of increasing extinction velocity with air dilution of the fuel stream is captured well. The discrepancies with the data are mostly attributed to the neglect of conditional fluctuations.  相似文献   

8.
Confined short turbulent swirling premixed and non-premixed methane and heptane spray flames stabilized on an axisymmetric bluff body in a square enclosure have been examined close to the blow-off limit and during the extinction transient with OH* chemiluminescence and OH-PLIF operated at 5 kHz. The comparison of flames of different canonical types in the same basic aerodynamic field allows insights on the relative blow-off behaviour. The flame structure has been examined for conditions increasingly closer to blow-off. The premixed flame was seen to change from a cylindrical shape at stable burning condtions, with the flame brush closing across the flow at conditions close to blow-off. The PLIF images show that for the gaseous non-premixed flame, holes appear along the flame sheet with increasing frequency as the blow-off condition is approached, while the trend is less obvious for the spray flame. Non-premixed and spray flames showed randomly-occurring lift-off, which is further evidence of localised extinction. The mean lift-off height increased with increasing fuel jet velocity and decreased with increasing air velocity and approaches zero (i.e. the flame is virtually attached) just before the blow-off condition, despite the fact that more holes were evident in the flame sheet as extinction was approached. It was found that the average duration of the blow-off event, when normalised with the characteristic flow time d/U b (d being the bluff-body diameter and U b the bulk velocity) was in the range 9–38 with the spray flame extinction lasting a shorter time than the gaseous flames. Finally, it was found that correlations based on a Damköhler number collapse the blow-off velocity data for all flames with reasonable accuracy. The results can help the development of advanced turbulent combustion models.  相似文献   

9.
A strategy to introduce hydrocarbon combustion detailed chemistry into three-dimensional numerical simulation of flames is reported. Significant progress has been made recently in terms of accuracy and robustness in both chemical kinetics and flow computations. However, the highest resolution reached in simulation of practical burner does not yet ensure that the response of intermediate radical species is fully captured. In the method discussed, the full set of species and elementary reaction rates of the detailed mechanism are retained, but only species featuring non-zero concentration in fresh and burnt gases are transported with the flow. Intermediate chemical species, developing within thin flame layers, are expressed resorting to their self-similar properties observed in a series of canonical combustion problems, projected into an optimized progress variable defined from all transported species. The method is tested with success in various adiabatic and non-adiabatic laminar steady- and unsteady-strained premixed flames.  相似文献   

10.
In the frame of this work a transported joint scalar probability density function (PDF) method is combined with the flamelet generated manifolds (FGM) tabulated chemistry approach for large eddy simulation (LES) modeling of a three-dimensional turbulent premixed swirl burner. This strategy accounts for the turbulence-chemistry interaction at reasonable computational costs. At the same time, it allows the usage of detailed chemistry mechanisms for the creation of the chemical database. The simulation results obtained are comparatively assessed along with complementary measurements. Furthermore, transient and time-averaged data are used to provide insight into the flow physics of the bluff-body swirl stabilized flame considered. The sensitivity of the results to different modeling approaches regarding the predicted flame shape and its dynamics is also investigated, where the implemented approach is compared with the well-established artificially thickened flame (ATF) combustion model. Consequently, the investigation conducted in this work aims to provide a complete picture on the ability of the proposed combustion model to reproduce the flow conditions within complex bluff-body swirl stabilized flames.  相似文献   

11.
Two transported PDF strategies, joint velocity-scalar PDF (JVSPDF) and joint scalar PDF (JSPDF), are investigated for bluff-body stabilized jet-type turbulent diffusion flames with a variable degree of turbulence–chemistry interaction. Chemistry is modeled by means of the novel reaction-diffusion manifold (REDIM) technique. A detailed chemistry mechanism is reduced, including diffusion effects, with N 2 and CO 2 mass fractions as reduced coordinates. The second-moment closure RANS turbulence model and the modified Curl’s micro-mixing model are not varied. Radiative heat loss effects are ignored. The results for mean velocity and velocity fluctuations in physical space are very similar for both PDF methods. They agree well with experimental data up to the neck zone. Each of the two PDF approaches implies a different closure for the velocity-scalar correlation. This leads to differences in the radial profiles in physical space of mean scalars and mixture fraction variance, due to different scalar flux modeling. Differences are visible in mean mixture fraction and mean temperature, as well as in mixture fraction variance. In principle, the JVSPDF simulations can be closer to physical reality, as a differential model is implied for the scalar fluxes, whereas the gradient diffusion hypothesis is implied in JSPDF simulations. Yet, in JSPDF simulations, turbulent diffusion can be tuned by means of the turbulent Schmidt number. In the neck zone, where the turbulent flow field results deteriorate, the joint scalar PDF results are in somewhat better agreement with experimental data, for the test cases considered. In composition space, where results are reported as scatter plots, differences between the two PDF strategies are small in the calculations at hand, with a little more local extinction in the joint scalar PDF results.  相似文献   

12.
We propose a new flame index for the transported probability density function(PDF) method. The flame index uses mixing flux projections of Lagrangian particles on mixture fraction and progress variable directions as the metrics to identify the combustion mode, with the Burke-Schumann solution as a reference. A priori validation of the flame index is conducted with a series of constructed turbulent partially premixed reactors. It indicates that the proposed flame index is able to identify the combustion mode based on the subgrid mixing information. The flame index is then applied the large eddy simulation/PDF datasets of turbulent partially premixed jet flames. Results show that the flame index separate different combustion modes and extinction correctly. The proposed flame index provides a promising tool to analyze and model the partially premixed flames adaptively.  相似文献   

13.
Numerical simulation results are presented for ‘Delft Flame III’, a piloted jet diffusion flame with strong turbulence–chemistry interaction. While pilot flames emerge from 12 separate holes in the experiments, the simulations are performed on a rectangular grid, under the assumption of axisymmetry. In the first part of the paper, flow and mixing field results are presented with a non-linear first order k–ε model, with the transport equation for ε based on a modeled enstrophy transport equation, for cold and reactive flows. For the latter, the turbulence model is applied in combination with pre-assumed β-PDF modeling for the turbulence–chemistry interaction. The mixture fraction serves as conserved scalar. Two chemistry models are considered: chemical equilibrium and a steady laminar flamelet model. The importance of the turbulence model is highlighted. The influence of the chemistry model is noticeable too. A procedure is described to construct appropriate inlet boundary conditions. Still, the generation of accurate inlet boundary conditions is shown to be far less important, their effect being local, close to the nozzle exit. In the second part of the paper, results are presented with the transported scalar PDF approach as turbulence–chemistry interaction model. A C1 skeletal scheme serves as chemistry model, while the EMST method is applied as micro-mixing model. For the transported PDF simulations, the model for the pilot flames, as an energy source term in the mean enthalpy transport equation, is important with respect to the accuracy of the flow field predictions. It is explained that the strong influence on the flow and mixing field is through the turbulent shear stress force in the region, close to the nozzle exit.  相似文献   

14.
Flame stabilization and the mechanisms that govern the dynamics at the flame base of lifted flames have been subject to numerous studies in recent years. A combined Large Eddy Simulation-Conditional Moment Closure (LES-CMC) approach has been successful in predicting flame ignition and stabilization by auto-ignition, but accurate modelling of the competition between turbulent quenching and laminar and turbulent flame propagation at the anchor point had not been demonstrated. This paper will consolidate LES-CMC results by analysing a wide range of lifted flame geometries with different prevailing stabilization mechanisms. The simulations allow a clear distinction of these mechanisms. It is corroborated that LES-CMC accurately predicts the competition between turbulence and chemistry during the auto-ignition process, the dynamics of turbulent flame propagation can be captured, however, the dynamics of the extinction process are not approximated well under certain conditions. The averaging process inherent in the CMC methods does not allow for an instant response of the transported conditionally averaged reactive species to the changes in the flow conditions and any response of the scalars will therefore be delayed. The dimensionality of the CMC implementation affects the solution and higher dimensionality does no necessarily improve results. Stationary or quasi-stationary conditions, however, can be well predicted for all flame configurations.  相似文献   

15.
Large-eddy simulations (LES) combined with the transported probability density function (PDF) method are carried out for two turbulent piloted premixed methane-air jet flames (flame F1 and flame F3) to assess the capability of LES/PDF for turbulent premixed combustion. The conventionally used model for the sub-filter scale mixing time-scale (or the mixing frequency) fails to capture the premixed flames correctly. This failure is expected to be caused by the lack of the sub-filter scale premixed flame propagation property in the sub-filter scale mixing process when the local flame front is under-resolved. It leads to slower turbulent premixed flame propagation and wider flame front. A new model for specifying the sub-filter scale mixing frequency is developed to account for the effect of sub-filter scale chemical reaction on mixing, based on past development of models for the sub-filter scale scalar dissipation rate in premixed combustion. The new model is assessed in the two turbulent premixed jet flames F1 and F3. Parametric studies are performed to examine the new model and its sensitivity when combined with the different mixing models. Significantly improved performance of the new mixing frequency model is observed to capture the premixed flame propagation reasonably, when compared with the conventional model. The sensitivity of the flame predictions is found be relatively weak to the different mixing models in conjunction with the new mixing frequency model.  相似文献   

16.
Common combustion chambers often exhibit turbulent flames propagating in partially-premixed mixtures. This propagation is generally governed by aerodynamics, unsteady mixing and chemical processes and may also be affected by conductive heat losses when the reactive zone develops close to the burner lips. The Filtered TAbulated Chemistry for Large Eddy Simulation (F-TACLES) model has been recently developed to include tabulated chemistry in Large Eddy Simulation (LES) of adiabatic stratified flames in flamelet regimes. The present article proposes a modeling approach to account for both differential diffusion and non-adiabatic effects on flame consumption speed following the F-TACLES formalism. The adiabatic F-TACLES model is first detailed using a generalized formalism for diffusive fluxes allowing either to account for differential diffusion or not. The F-TACLES model is then extended to non-adiabatic situations. A correction factor based on the non-adiabatic consumption rate is introduced to recover a realistic filtered flame consumption speed. The objective is here to tackle flame stabilization mechanisms when heat losses affect the reaction zone. The proposed approach is validated through the simulation of the unconfined stratified turbulent jet flame TSF-A for which stabilization process is affected by heat losses. Five simulations are performed for both adiabatic and non-adiabatic flow conditions comparing unity Lewis number and complex diffusion assumptions. The adiabatic F-TACLES model predicts a flame anchored at the burner lip disagreeing with experimental data. The non-adiabatic simulation exhibits local extinction due to heat losses near the burner exit. The flame is then lifted improving the comparison with experiments. Results also show a significant impact of molecular diffusion model on both mean flame consumption rate and angle.  相似文献   

17.
A variety of investigators have attempted to characterize the mechanisms of how reaction zones stabilize, or propagate, against incoming reactants, particularly in stable lifted jet flames both laminar and turbulent. In this paper, experiments are described that investigate the characteristics of upstream flame propagation in turbulent hydrocarbon jet flames. An axisymmetric, gaseous turbulent jet mixing in air has been selectively ignited at downstream positions to assess the upstream propagation of the bulk reaction zone. The farthest axial position that permitted the reaction zone to propagate upstream after application of the ignition source, referred to as the “upper propagation limit”, or UPL, is determined for a variety of jet and air co-flow parameters. There is an inverse relationship between the upper propagation limit position and the jet Reynolds number. Conversely, there is a direct relationship between the upper propagation limit and the co-flow velocity. Interpretation of the results is related to the velocity at the stoichiometric surface. Global discussion is made as to what these results imply about the stabilization and propagation of turbulent lifted jet flames.  相似文献   

18.
The present study concerns the investigation of different mixing models for use in the transported probability density function (PDF) modeling of turbulent (reacting) spray flows. The modeling of the turbulent mixing and other characteristic scalar variables such as gas enthalpy using transported (joint) PDFs has become an important method to describe turbulent (reacting) spray flows since the evaporation process causes the PDF of the mixture fraction to deviate from the widely used β function, which is typically used in models for turbulent gas flows. In the PDF transport equation, the molecular mixing does not appear in closed form so that modeling strategies are required. For gas combustion, the interaction-by-exchange-with-the-mean (IEM) model, the modified Curl (MC) model, and the Euclidean minimum spanning tree (EMST) models are used. More recently, a new mixing model, the PSP model, which is based on parameterized scalar profiles has been developed. The present study focuses on the use and analysis of the IEM, MC and PSP models for turbulent spray flames. For this purpose, the models are reconsidered with respect to the evaporation process that must be included and evaluated if spray combustion is considered. For model evaluation, turbulent ethanol/air spray flames are simulated, and the results are compared to experimental data by A. Masri, University of Sydney, Australia.  相似文献   

19.
A progress variable/flame surface density/probability density function method has been employed for a Large Eddy Simulation of a CH4/Air turbulent premixed bluff body flame. In particular, both mean and variance of the progress variable are transported and subgrid spatially filtered gradient contributes to model the flame surface density (that introduces the effect of the subgrid flame reaction zone) and to presume a probability density function (that introduces the effect of subgrid fluctuations on chemistry). Chemistry is preliminarly tabulated in terms of laminar premixed flames and enthalpy is included as a new coordinate in their tabulation to take into account heat losses in the flowfield. Then, the PDF is used to build a turbulent flamelet library. The filtered mass, momentum, enthalpy and scalar equations mentioned above are integrated by an explicit scheme using finite differences, 2nd?Corder accurate in space and third order in time, over a cylindrical non-uniform grid using a staggered mesh. The bluff-body geometry is modelled by using the Immersed Boundary Method. The numerical predictions are compared with the available experimental data.  相似文献   

20.
Tabulated chemistry models like the Flamelet Generated Manifolds method are a good approach to include detailed information on the reaction kinetics in a turbulent flame at reasonable computational costs. However, so far, not all information on e.g. heat losses are contained in these models. As those often appear in typical technical applications with enclosed flames in combustion chambers, extensions to the standard FGM approach will be presented in this paper, allowing for the representation of non-adiabatic boundaries. The enthalpy as additional control variable for the table access is introduced, such that the chemistry database becomes three-dimensional with mixture fraction, reaction progress variable and enthalpy describing the thermo-chemical state. The model presented here is first validated with a two-dimensional enclosed Bunsen flame and then applied within the Large Eddy Simulations of a turbulent premixed swirl flame with a water-cooled bluff body and a turbulent stratified flame, where additional modeling for the flame structure using artificially thickened flames was included. The results are encouraging, as the temperature decrease towards the bluff body in the swirl flame and the cooling of the pilot flame exhaust gases in the stratified configuration can be observed in both experiments and simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号