首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
聚合物多元醇分散体的流变特性   总被引:1,自引:0,他引:1  
聚合物多元醇分散体(以下简称分散体)是接枝聚醚多元醇、聚醚多元醇和乙烯基单体聚合物的混合物,直接用于制备高回弹、高负载和阻燃的软质和半软质聚氨酯泡沫体,是新一代聚醚多元醇产品[1].分散体用于聚氨酯工业中各种产品的生产,除要求有良好的稳定性外,其最为重要的指标是粘度应小于3000mPa·s和乙烯基单体聚合物的含量(固含量)应大于40%.但分散体的粘度,随固含量的增加呈指数性增加[2].近年来,已有既具高固含量和良好稳定性,又有较低粘度的分散体的研究报道[3].本文在不同的反应条件下,合成了分散体,测定了其流变特性和体系中微粒的大小…  相似文献   

2.
PU大分子单体水溶液性质   总被引:2,自引:0,他引:2  
双亲聚合物一般由亲水和亲油 2种链段构成 ,有嵌段型[1,2 ] 和接枝型[3 ] 2种 ,其中通过大分子单体法合成双亲接枝聚合物备受关注[4] 。如以亲水性大分子单体和亲油性小分子单体共聚 ,大分子单体构成共聚物主链上支链 ,具有较大活动性 ,亲水效能高。采用对氯甲基苯乙烯[5] 或甲基丙烯酰氯[6] 与聚氧化乙烯大分子的一端相反应 ,可得到亲水性大分子单体 ,但其分子量及结构变化有限。本文采用常规条件 ,合成了嵌段式水溶性聚氨酯大分子单体 ,其分子量较大 ,共聚接枝的支链较长。利用该大分子单体具有非离子高分子表面活性剂的性质 ,采用无皂乳…  相似文献   

3.
高于临界聚合反应温度时,α-甲基苯乙烯(AMS)单体和其聚合物处于聚合-解聚平衡.基于AMS聚合物在受热时可裂解生成大分子链自由基的特性,提出了含AMS结构单元的共聚物是一种"活"的,可作为大分子自由基引发剂的概念,并通过实验对AMS共聚物的引发性能和应用进行了研究.首先,合成了AMS与(甲基)丙烯酸酯类单体、丙烯酸、苯乙烯和马来酸酐等的共聚物.然后以上述共聚物为大分子引发剂,在90℃引发(甲基)丙烯酸酯类单体和苯乙烯等的本体聚合、溶液聚合和乳液聚合,得到了嵌段共聚物.用ESR谱证明了AMS的共聚物在加热时能裂解生成以碳原子为中心的大分子链自由基.此外,在聚合物的熔融共混中,AMS分解产生的大分子链自由基通过偶合反应形成接枝链,原位生成相容剂.AMS共聚物还可以对碳纳米管及无机粒子进行表面原位接枝改性.AMS共聚物是一类无小分子残留的绿色自由基引发剂,可以用于低成本制备两嵌段共聚物,也可以用于聚合物的熔融共混增容.  相似文献   

4.
温敏两亲性接枝物PAM-g-PNIPAm的合成及表征   总被引:1,自引:0,他引:1  
以巯基乙胺为分子量调节剂,以丙烯酰氯作为链端转化剂合成了不同分子量的端丙烯酰胺基聚(N-异丙基丙烯酰胺)(PNIPAm)大分子单体;与丙烯酰胺共聚合,合成了以PNIPAm为侧链的接枝聚丙烯酰胺.用FTIR和1HNMR方法表征了接枝聚合物与大分子单体的组成.该接枝聚合物在水溶液中具有热缔合特性及明显的温敏增稠性,水溶液的粘度在32~50℃之间随温度增加而增加.  相似文献   

5.
以聚乙二醇甲基丙烯酸酯(PEGMA)为大分子引发剂进行ε-己内酯的酶催化开环聚合, 合成出嵌段共聚物, 然后将其转化成大分子引发剂型单体(Macroinimer), 最后通过原子转移自由基聚合(ATRP)制备出一种新型结构的嵌段型支化聚合物.  相似文献   

6.
配位有机硅在聚醚氨酯中的应用   总被引:3,自引:0,他引:3  
研究了直接从无定型二氧化硅出发,与乙二醇、氢氧化钾反应,生成高反应活性的五配位硅钾络合物,并以此为原料与2-氯乙醇反应制备双羟基四配位有机硅单体,该单体作为扩连剂再与异氰酸酯基封端的聚醚或聚酯进行低温溶液缩聚反应合成含硅聚醚氨酯,经红外光谱,热重分析,胶渗透色法测定分子量等对合成的物质作了结构表征,热重分析表明该聚合物的耐热性能有所提高,胶渗透色谱法测定分子量高于10万。  相似文献   

7.
研究了以双硫酯为链转移剂进行的均聚和嵌段共聚物的合成。首先合成大分子链转移剂,得到分子量可控、多分散性系数(PDI)较小(<1.30)的均聚物。用末端带有双硫酯基因的PSt,PBMA和PBA为链转移剂,加入第二单体聚合得到分子量可控、且PDI较小的两嵌段聚合物。嵌段聚合时必须加入微量的自由基引发剂以形成大分子自由基,达到较好的控制聚合效果。  相似文献   

8.
以低不饱和度环氧丙烷聚醚三元醇与L型及DL型丙交酯为原料, 合成了不同单体物质的量比的聚醚与聚乳酸嵌段共聚物. 采用FTIR, 1H NMR, GPC对共聚物的结构进行了表征; 用DSC, DTA对共聚物的玻璃化转变温度、熔点及热分解温度进行了研究. 结果表明, 丙交酯在聚醚多元醇端羟基的引发下发生开环反应, 得到聚环氧丙烷L型乳酸(POLLA)或聚环氧丙烷DL型乳酸(PODLA)二嵌段共聚物. POLLA二嵌段共聚物具有结晶能力, 且随着L型聚乳酸链段的增长而增强. PODLA二嵌段共聚物为非晶态聚合物. 两种共聚物的玻璃化转变温度与共聚物的组成有关, 其值介于聚醚和聚乳酸玻璃化转变温度之间. 与聚醚三元醇相比, 二嵌段共聚物的耐热性得到提高, 其热分解温度提高了30~60 ℃, 约为235~262 ℃. 共聚物的结构和组成对材料的热降解机制有很大影响. PODLA在高温区发生热氧化降解.  相似文献   

9.
合成了缩酮保护的一代甲基丙烯酸羟乙酯单体DHEMA(G1),通过顺序ATRP聚合方法,制备得到大分子引发剂PDHEMA(G1)-Br,再引发苯乙烯单体得到一代嵌段聚合物PDHEMA(G1)-b-PS.以PDHEMA(G1)-b-PS为反应前体,通过重复的缩酮保护和脱保护反应,进一步得到了二代和三代的树状化-线形两亲嵌段...  相似文献   

10.
通过与大分子单体的共聚合是合成接枝聚合物的一个重要方法。已有人合成了端苯乙烯和丙烯酸酯的聚硅氧烷大分子单体,本文报道对端烯丙基聚二甲基硅氧烷的合成以及添加聚硅氧烷对Ziegler-Natta型催化剂乙烯聚合行为的影响。  相似文献   

11.
核磁、离子色谱等测试方法证明 ,以烯丙基型卤代烷烃为引发剂引发的过渡金属催化的活性自由基聚合 ,所得聚合物的端基为卤素[13].由于C—X(X =Cl,Br)键容易断裂 ,因此卤素端基的存在会影响聚合产物的热稳定性 .但由于C—X键易于进行各种反应 ,含卤素端基的聚合物可以作为大分子引发剂用于引发其它合适单体反应 ,从而使卤素端基转化为其它基团 ,或合成新型结构的共聚物 .环状单体 2 甲基 2 唑啉 (Me OXZ)亲核性较强 ,可以直接由烯丙基型卤代物引发剂引发活性开环聚合[4 6 ],因此可望以含卤端基的活性聚合产物作为Me OX…  相似文献   

12.
研究了以双硫酯为链转移剂进行的均聚和嵌段共聚物的合成 .首先合成大分子链转移剂 ,得到分子量可控、多分散性系数较小的均聚物PMMA、PBMA、PEMA、PEA、PBA、PMA、PSt,多分散性系数一般小于 1 30 .在相同的条件下 ,甲基丙烯酸酯类的聚合速度最快 ,苯乙烯其次 ,丙烯酸酯类最慢 .用末端带有双硫酯基团的PSt、PBMA、PBA为链转移剂 ,加入多种第二单体聚合得到实测分子量与理论分子量接近 ,且多分散性系数较小的两嵌段聚合物 .在链转移剂和引发剂的比例为 3∶1~ 6∶1的范围内 ,聚苯乙烯同样可以作为第一嵌段得到和其它酯类单体的两嵌段聚合物 .1 H NMR方法证明了聚合物的末端带有双硫酯基团 .嵌段聚合时必须加入微量的自由基引发剂以形成大分子自由基 ,达到较好的控制聚合效果  相似文献   

13.
共轭聚合物在光电子信息领域具有非常广阔的应用前景,受到了广泛的关注和研究.大部分共轭聚合物通常采用过渡金属络合物催化偶联的方法得到,然而这类方法对单体纯度要求高、反应时间长、条件苛刻,而且很难精确控制共轭聚合物的分子量、多分散性以及链端基团.近年来,催化转移缩聚作为一种可控合成共轭聚合物的新方法,引起了人们的浓厚兴趣.在这类反应过程中催化剂能发生分子内转移到达链端,活化聚合物链端官能团,随后与单体反应进行聚合物链的增长,因此反应遵循链增长机理,可以实现对共轭聚合物结构特性的有效控制,如分子量、多分散性和分子结构/构型等.目前,通过催化转移缩聚已经成功合成出一系列分子量可控、分散度窄的共轭均聚物、聚合物刷、毛发状核壳微粒、嵌段共聚物、交替共聚物以及大分子引发剂、大分子单体(用于制备刚-柔嵌段共聚物)等.本文结合国内外的研究现状对催化转移缩聚反应可控合成共轭聚合物及其机理作了较为全面的综述,并展望了其发展趋势.  相似文献   

14.
以带双硫酯取代基聚醚醚酮为大分子链转移剂, 采用可逆加成-断裂链转移自由基聚合(RAFT)法合成不同接枝率的磺化聚醚醚酮(g-SPEEK), 并对其结构进行表征. 在单体/链转移剂/引发剂的投料比(摩尔比)为50:4:1, 温度为70 ℃, 反应24 h, 得到聚合物膜的离子交换容量和吸水率分别为1.312 mmol/g和43.51%, 其溶胀率为5.05%, 低于Nafion膜的11.50%. 热重分析(TGA)结果表明该梳型g-SPEEK具有较好的热力学稳定性, 且该聚合物膜具有与Nafion膜相当的抗氧化性. 在相同的离子交换容量下, 梳型g-SPEEK比主链型SPEEK具有更好的H+离子透过性能.  相似文献   

15.
研究了以苯乙烯(St)和N-[4-(2-溴丙酰氧基)苯基]马来酰亚胺(BPPM)的交替共聚物P(St-alt-BPPM)为大分子多官能度引发剂,以CuBr/2,2′-联吡啶(bpy)为催化体系,环己酮为溶剂,在60或80℃下进行St的原子转移自由基聚合(ATRP).结果表明,反应呈现活性聚合的假一级反应动力学特征,聚合物分子量随着单体转化率上升而增加,降低反应温度将减低反应速率,但是所得聚合物[P(St-alt-BPPM)-g-PS]分子量分布更窄.水解实验证明该过程具有一定可控性.由于类似的单官能度引发剂无法在同等条件下顺利引发St的ATRP,因此采用大分子多官能度引发剂可以大幅度降低ATRP的反应温度.此加速现象被归因于CuBr/bpy从大分子引发剂线团外向线团内扩散,而CuBr2/bpy则从大分子引发剂线团内向线团外扩散,从而提高大分子引发剂线团中的自由基浓度和聚合反应速率.  相似文献   

16.
合成了一种新型聚合单体 1 甲基 4,5 二 (4 氯代苯甲酰基 )环己烯 ,并与 4 (3 ,5 二甲基 4 羟基苯基 ) 2 ,3 二氮杂萘 1 酮单体经亲核取代反应 ,成功地合成了含环己烯结构的杂环联苯型聚醚酮聚合物 .用FT IR、1H NMR、DSC、X 射线衍射等方法对聚合物进行了表征 ,并研究了聚合物的溶解性能 .结果表明 ,聚合物是一种具有较高的玻璃化温度的可溶性无规共聚物 .聚合物含有不饱和双键结构 ,是一种反应性高分子  相似文献   

17.
原子转移自由基聚合(ATRP)在星形聚合物合成中的应用   总被引:6,自引:0,他引:6  
综述了近10 年来采用原子转移自由基聚合(ATRP) 法合成星形聚合物的研究进展。从聚合单体、引发剂、聚合方法和反应条件以及聚合物性质等方面讨论了原子转移自由基聚合在星形聚合物合成中的应用,并根据聚合方法和引发剂对各种反应进行了分类。对原子转移自由基聚合技术在合成功能性复杂星形聚合物中的应用进行了展望。  相似文献   

18.
由石油化工副产C5馏份提取双环戊二烯(DCPD)、以聚合物负载三氟化硼为催化剂进行DCPD与烯丙基氯(AC)的Diels-Alder反应合成5-氯甲基-2-降冰片烯(NBCH2Cl),经锂代反应后用以引发苯乙烯的活性阴离子聚合合成了降冰片烯(NB)基聚苯乙烯(PS)大分子环烯单体NB-PS,在聚合物负载钌卡宾络合物[RuCl2(PPh3)2(=C=CHtBu)]催化(引发)作用下进行大分子单体NB-PS的开环歧化聚合(ROMP)合成了梳形接枝共聚物PNB-g-PS.实验结果表明所合成聚合物负载硼、钌络合物催化剂的性能均明显优于对应非负载体.讨论了上述催化剂的聚合物载体效应的机理及温度、溶剂等对活性阴离子聚合反应的影响.  相似文献   

19.
董襄朝  王薇  王海波  孙慧  李琰  王宁  刘淑霞 《色谱》2005,23(1):7-11
印迹聚合物合成条件对聚合物性能的影响是分子印迹技术中的一项重要研究内容。以左旋麻黄碱为印迹分子,甲基丙烯酸为功能单体,使用不同的交联剂和致孔剂合成了印迹聚合物,并对所得到的印迹聚合物的比表面积、孔结构和结合特性进行了评价。研究结果说明合成的印迹聚合物对印迹分子具有很好的亲和能力及选择性。致孔剂可以影响聚合物比表面积的大小及单体组成。氯仿是甲基丙烯酸-乙二醇二甲基丙烯酸酯和甲基丙烯酸-季戊四醇三丙烯酸酯聚合链的良溶剂,导致了比表面积及孔容较小的聚合物结构;而以乙腈为致孔剂得到的聚合物有较大的比表面积。共聚物中羧基含量的测定结果也说明,在预聚溶液中单体浓度相同的条件下,以不同的致孔剂进行合成得到的聚合物中甲基丙烯酸的比例不同。聚合物的比表面积及单体浓度的差别都可能导致聚合物的结合容量不同。  相似文献   

20.
端丙烯酸酯基超支化聚(酯-胺)的结构分析及光固化   总被引:2,自引:1,他引:1  
近年来 ,具有树枝状结构的超支化聚合物因其独特的物理化学性质而得到广泛关注[1,2 ] .超支化聚合物主要采用 3种途径合成 ,( 1 )ABn(n >2 )型及潜ABn 型单体的聚合 ;( 2 )由A2 与Bn 型单体直接聚合 ;( 3)先由特定的单体对原位形成ABn型中间体后再聚合 .其中后两种方法可直接采用商业化原料 ,因此更具有实用价值 .目前 ,基于途径 ( 2 )已合成出超支化聚酰胺[3 ] 、聚醚[4] 、聚酰亚胺[5] 和共轭聚合物[6] 等 ,但该途径容易生成凝胶化产物 ,通过控制反应物浓度、在凝胶点之前停止反应等 ,可得到溶解型超支化产物 .由于超支化聚合物具有低…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号